BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 1779877)

  • 1. Co2+ and Ni2+ resistance in Saccharomyces cerevisiae associated with a reduction in the accumulation of Mg2+.
    Joho M; Tarumi K; Inouhe M; Tohoyama H; Murayama T
    Microbios; 1991; 67(272-273):177-86. PubMed ID: 1779877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The isolation and characterization of Ni2+ resistant mutants of Saccharomyces cerevisiae.
    Joho M; Imada Y; Murayama T
    Microbios; 1987; 51(208-209):183-90. PubMed ID: 3316939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced uptake of nickel by a nickel resistant strain of Candida utilis.
    Ross IS
    Microbios; 1995; 83(337):261-70. PubMed ID: 8577262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel resistance in fission yeast associated with the magnesium transport system.
    Sarikaya AT; Akman G; Temizkan G
    Mol Biotechnol; 2006 Feb; 32(2):139-46. PubMed ID: 16444015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cobalt and nickel sensitivity and tolerance in Klebsiella pneumoniae.
    Ainsworth MA; Tompsett CP; Dean AC
    Microbios; 1980; 27(109 110):175-84. PubMed ID: 7003318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interrelationships in trace-element metabolism in metal toxicities in nickel-resistant strains of Neurospora crassa.
    Maruthi Mohan P; Sivarama Sastry K
    Biochem J; 1983 Apr; 212(1):205-10. PubMed ID: 6223632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach.
    Cakar ZP; Alkim C; Turanli B; Tokman N; Akman S; Sarikaya M; Tamerler C; Benbadis L; François JM
    J Biotechnol; 2009 Aug; 143(2):130-8. PubMed ID: 19577596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance to cadmium, cobalt, zinc, and nickel in microbes.
    Nies DH
    Plasmid; 1992 Jan; 27(1):17-28. PubMed ID: 1741458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of silicon on cobalt, zinc, and magnesium in baker's yeast, Saccharomyces cerevisiae.
    Brasser HJ; Krijger GC; van Meerten TG; Wolterbeek HT
    Biol Trace Elem Res; 2006 Aug; 112(2):175-89. PubMed ID: 17028383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The yeast mutant vps5Delta affected in the recycling of Golgi membrane proteins displays an enhanced vacuolar Mg2+/H+ exchange activity.
    Borrelly G; Boyer JC; Touraine B; Szponarski W; Rambier M; Gibrat R
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9660-5. PubMed ID: 11493679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of acquired resistance to Co2+ and Ni2+ in Gram-positive and Gram-negative bacteria.
    Webb M
    Biochim Biophys Acta; 1970 Nov; 222(2):440-6. PubMed ID: 4992523
    [No Abstract]   [Full Text] [Related]  

  • 12. Calcium and magnesium competitively influence the growth of a PMR1 deficient Saccharomyces cerevisiae strain.
    Szigeti R; Miseta A; Kellermayer R
    FEMS Microbiol Lett; 2005 Oct; 251(2):333-9. PubMed ID: 16143464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive inhibition of an energy-dependent nickel transport system by divalent cations in Bradyrhizobium japonicum JH.
    Fu CL; Maier RJ
    Appl Environ Microbiol; 1991 Dec; 57(12):3511-6. PubMed ID: 1785926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the capsule produced by Bacillus megaterium ATCC 19213 in the accumulation of metallic cations.
    Cassity TR; Kolodziej BJ
    Microbios; 1984; 41(160):117-25. PubMed ID: 6429482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of Spt7p in vacuolar polyphosphate level of Saccharomyces cerevisiae.
    Nishimura K; Yasumura K; Igarashi K; Kakinuma Y
    Biochem Biophys Res Commun; 1999 Apr; 257(3):835-8. PubMed ID: 10208869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removing heavy metals from synthetic effluents using "kamikaze" Saccharomyces cerevisiae cells.
    Ruta L; Paraschivescu C; Matache M; Avramescu S; Farcasanu IC
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):763-71. PubMed ID: 19795117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 45Ca2+ uptake by Trichoderma viride mycelium. Correlation with growth and conidiation.
    Krystofová S; Varecka L; Betina V
    Gen Physiol Biophys; 1995 Aug; 14(4):323-7. PubMed ID: 8720696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular heavy-metal ions stimulate Ca2+ mobilization in hepatocytes.
    McNulty TJ; Taylor CW
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):555-61. PubMed ID: 10215593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of divalent metal ions--stimulants of uterine contractile activity--on the Mg2+, ATP-dependent transport of Ca2+ in the myometrial sarcolemma fraction].
    Kosterin SA; Kurskiĭ MD; Bratkova NF
    Vopr Med Khim; 1985; 31(2):97-101. PubMed ID: 3159152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of metal ion activation and inhibition of CTP synthetase.
    Robertson JG; Villafranca JJ
    Biochemistry; 1993 Apr; 32(14):3769-77. PubMed ID: 8385490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.