These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17800568)

  • 1. A rapid cold-hardening process in insects.
    Lee RE; Chen CP; Denlinger DL
    Science; 1987 Dec; 238(4832):1415-7. PubMed ID: 17800568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold tolerance and supercooling capacity in overwintering adults of elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae).
    Soudi Sh; Moharramipour S
    Environ Entomol; 2011 Dec; 40(6):1546-53. PubMed ID: 22217772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis.
    Michaud MR; Denlinger DL
    J Insect Physiol; 2006 Oct; 52(10):1073-82. PubMed ID: 16997319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p38 MAPK is a likely component of the signal transduction pathway triggering rapid cold hardening in the flesh fly Sarcophaga crassipalpis.
    Fujiwara Y; Denlinger DL
    J Exp Biol; 2007 Sep; 210(Pt 18):3295-300. PubMed ID: 17766307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid cold hardening elicits changes in brain protein profiles of the flesh fly, Sarcophaga crassipalpis.
    Li A; Denlinger DL
    Insect Mol Biol; 2008 Sep; 17(5):565-72. PubMed ID: 18828842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold hardiness of the fly pupal parasitoid Nasonia vitripennis is enhanced by its host Sarcophaga crassipalpis.
    Rivers DB; Lee RE; Denlinger DL
    J Insect Physiol; 2000 Jan; 46(1):99-106. PubMed ID: 12770263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desiccation enhances rapid cold-hardening in the flesh fly Sarcophaga bullata: evidence for cross tolerance between rapid physiological responses.
    Yi SX; Gantz JD; Lee RE
    J Comp Physiol B; 2017 Jan; 187(1):79-86. PubMed ID: 27568301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins.
    Benoit JB; Lopez-Martinez G; Teets NM; Phillips SA; Denlinger DL
    Med Vet Entomol; 2009 Dec; 23(4):418-25. PubMed ID: 19941608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae).
    Marais E; Terblanche JS; Chown SL
    J Insect Physiol; 2009 Apr; 55(4):336-43. PubMed ID: 19171152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica.
    Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL
    J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness.
    Powell SJ; Bale JS
    J Exp Biol; 2005 Jul; 208(Pt 13):2615-20. PubMed ID: 15961747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid cold hardening in young hoppers of the migratory locust Locusta migratoria L. (Orthoptera: Acridiidae).
    Wang XH; Kang L
    Cryo Letters; 2003; 24(5):331-40. PubMed ID: 14566393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response.
    Yoder JA; Benoit JB; Denlinger DL; Rivers DB
    J Insect Physiol; 2006 Feb; 52(2):202-14. PubMed ID: 16290823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells.
    Lee RE; Damodaran K; Yi SX; Lorigan GA
    Cryobiology; 2006 Jun; 52(3):459-63. PubMed ID: 16626678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae.
    Régnière J; Bentz B
    J Insect Physiol; 2007 Jun; 53(6):559-72. PubMed ID: 17412358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis.
    Terblanche JS; Marais E; Chown SL
    J Insect Physiol; 2007 May; 53(5):455-62. PubMed ID: 17368475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold hardiness adaptations of codling moth, cydia pomonella.
    Neven LG
    Cryobiology; 1999 Feb; 38(1):43-50. PubMed ID: 10079128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae).
    Powell SJ; Bale JS
    J Insect Physiol; 2004 Apr; 50(4):277-84. PubMed ID: 15081820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High temperature pulses decrease indirect chilling injury and elevate ATP levels in the flesh fly, Sarcophaga crassipalpis.
    Dollo VH; Yi SX; Lee RE
    Cryobiology; 2010 Jun; 60(3):351-3. PubMed ID: 20233586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis.
    Yi SX; Moore CW; Lee RE
    Apoptosis; 2007 Jul; 12(7):1183-93. PubMed ID: 17245639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.