BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 17803300)

  • 1. Evaluation of surface charge density and surface potential by electrophoretic mobility for solid lipid nanoparticles and human brain-microvascular endothelial cells.
    Kuo YC; Chen IC
    J Phys Chem B; 2007 Sep; 111(38):11228-36. PubMed ID: 17803300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophoresis of human brain microvascular endothelial cells with uptake of cationic solid lipid nanoparticles: effect of surfactant composition.
    Kuo YC; Wang CC
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):286-91. PubMed ID: 20004085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of arginine-modified solid lipid nanoparticles on the membrane charge of human brain-microvascular endothelial cells.
    Kuo YC; Lin CW
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):201-7. PubMed ID: 19419848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of glutamate on the electrical properties of cationic solid lipid nanoparticles containing stearylamine and dioctadecyldimethyl ammonium bromide.
    Kuo YC; Lin SC
    J Phys Chem B; 2008 Apr; 112(14):4454-60. PubMed ID: 18345661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophoretic mobility, zeta potential, and fixed charge density of bovine knee chondrocytes, methyl methacrylate-sulfopropyl methacrylate, polybutylcyanoacrylate, and solid lipid nanoparticles.
    Kuo YC; Lin TW
    J Phys Chem B; 2006 Feb; 110(5):2202-8. PubMed ID: 16471805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic mobility of a colloidal particle with constant surface charge density.
    Makino K; Ohshima H
    Langmuir; 2010 Dec; 26(23):18016-9. PubMed ID: 21047090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN).
    Helgason T; Awad TS; Kristbergsson K; McClements DJ; Weiss J
    J Colloid Interface Sci; 2009 Jun; 334(1):75-81. PubMed ID: 19380149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetic interference in the permeability of saquinavir across the blood-brain barrier using nanoparticulate carriers.
    Kuo YC; Kuo CY
    Int J Pharm; 2008 Mar; 351(1-2):271-81. PubMed ID: 17976933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoresis system for high temperature mobility measurements of nanosize particles.
    Rodriguez-Santiago V; Fedkin MV; Lvov SN
    Rev Sci Instrum; 2008 Sep; 79(9):093302. PubMed ID: 19044402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor.
    Kuo YC; Liang CT
    Biomaterials; 2011 Apr; 32(12):3340-50. PubMed ID: 21296415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of electromagnetic field on endocytosis of cationic solid lipid nanoparticles by human brain-microvascular endothelial cells.
    Kuo YC; Chen HH
    J Drug Target; 2010 Jul; 18(6):447-56. PubMed ID: 20528098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier.
    Schubert MA; Müller-Goymann CC
    Eur J Pharm Biopharm; 2005 Sep; 61(1-2):77-86. PubMed ID: 16011893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of electromagnetic field and surface modification on the electrical behavior of novel solid lipid nanoparticles covered with l-arginine.
    Kuo YC; Lin CW
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):45-51. PubMed ID: 19181492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of heterogeneously charged nanoparticles on a variably charged surface by the extended surface complexation approach: charge regulation, chemical heterogeneity, and surface complexation.
    Saito T; Koopal LK; Nagasaki S; Tanaka S
    J Phys Chem B; 2008 Feb; 112(5):1339-49. PubMed ID: 18189380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of lipid nanoparticles for camptothecin delivery: a comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion.
    Huang ZR; Hua SC; Yang YL; Fang JY
    Acta Pharmacol Sin; 2008 Sep; 29(9):1094-102. PubMed ID: 18718178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased target specificity of anti-HER2 genospheres by modification of surface charge and degree of PEGylation.
    Hayes ME; Drummond DC; Hong K; Zheng WW; Khorosheva VA; Cohen JA; C O N; Park JW; Marks JD; Benz CC; Kirpotin DB
    Mol Pharm; 2006; 3(6):726-36. PubMed ID: 17140260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles.
    Leroy P; Tournassat C; Bizi M
    J Colloid Interface Sci; 2011 Apr; 356(2):442-53. PubMed ID: 21316693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers.
    Kuo YC; Chung JF
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):299-306. PubMed ID: 21194902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge-based characterization of nanometric cationic bifunctional maghemite/silica core/shell particles by capillary zone electrophoresis.
    d'Orlyé F; Varenne A; Georgelin T; Siaugue JM; Teste B; Descroix S; Gareil P
    Electrophoresis; 2009 Jul; 30(14):2572-82. PubMed ID: 19593752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid lipid nanoparticles prepared by solvent diffusion method in a nanoreactor system.
    Yuan H; Huang LF; Du YZ; Ying XY; You J; Hu FQ; Zeng S
    Colloids Surf B Biointerfaces; 2008 Feb; 61(2):132-7. PubMed ID: 17888636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.