BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 17803325)

  • 41. Multilayered Pt/Ru nanorods with controllable bimetallic sites as methanol oxidation catalysts.
    Yoo SJ; Jeon TY; Kim KS; Lim TH; Sung YE
    Phys Chem Chem Phys; 2010 Dec; 12(46):15240-6. PubMed ID: 21046021
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catalytic performance of nanosized Pt-Au alloy catalyst in oxidation of methanol and toluene.
    Kim KJ; Kim YH; Ahn HG
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3795-9. PubMed ID: 18047061
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolution of the Pt layer deposited on MgO(001) by pulsed laser deposition as a function of the deposition parameters: a scanning tunneling microscopy and energy dispersive X-ray diffractometry/reflectometry study.
    Scavia G; Agostinelli E; Laureti S; Varvaro G; Paci B; Generosi A; Albertini VR; Kaciulis S; Mezzi A
    J Phys Chem B; 2006 Mar; 110(11):5529-36. PubMed ID: 16539492
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation and electrochemical behavior of PtRu(111) alloy single-crystal surfaces.
    El-Aziz AM; Hoyer R; Kibler LA
    Chemphyschem; 2010 Sep; 11(13):2906-11. PubMed ID: 20665619
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Size effect of Pt nanoparticle on catalytic activity in oxidation of methanol and formic acid: comparison to Pt(111), Pt(100), and polycrystalline Pt electrodes.
    Rhee CK; Kim BJ; Ham C; Kim YJ; Song K; Kwon K
    Langmuir; 2009 Jun; 25(12):7140-7. PubMed ID: 19397278
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium.
    Hoshi N; Kida K; Nakamura M; Nakada M; Osada K
    J Phys Chem B; 2006 Jun; 110(25):12480-4. PubMed ID: 16800575
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improvements in the characterization of the crystalline structure of acid-terminated alkanethiol self-assembled monolayers on Au(111).
    Mendoza SM; Arfaoui I; Zanarini S; Paolucci F; Rudolf P
    Langmuir; 2007 Jan; 23(2):582-8. PubMed ID: 17209609
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation.
    Cui SK; Guo DJ
    J Colloid Interface Sci; 2009 May; 333(1):300-3. PubMed ID: 19232631
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chlorine adsorption on Au(111): chlorine overlayer or surface chloride?
    Gao W; Baker TA; Zhou L; Pinnaduwage DS; Kaxiras E; Friend CM
    J Am Chem Soc; 2008 Mar; 130(11):3560-5. PubMed ID: 18290645
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unequal-sphere packing model for simulation of the uniaxially compressed iodine adlayer on Au(111).
    Tkatchenko A; Batina N
    J Phys Chem B; 2005 Nov; 109(46):21710-5. PubMed ID: 16853820
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adsorption characteristics of arylisocyanide on Au and Pt electrode surfaces: surface-enhanced Raman scattering study.
    Kim NH; Kim K
    J Phys Chem B; 2006 Feb; 110(4):1837-42. PubMed ID: 16471753
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In situ synthesis of Pt/carbon nanofiber nanocomposites with enhanced electrocatalytic activity toward methanol oxidation.
    Wang D; Liu Y; Huang J; You T
    J Colloid Interface Sci; 2012 Feb; 367(1):199-203. PubMed ID: 22082800
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Self-assembled monolayers on Pt(111): molecular packing structure and strain effects observed by scanning tunneling microscopy.
    Lee S; Park J; Ragan R; Kim S; Lee Z; Lim DK; Ohlberg DA; Williams RS
    J Am Chem Soc; 2006 May; 128(17):5745-50. PubMed ID: 16637642
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanoscale oxidation of Cu100: oxide morphology and surface reactivity.
    Lampimäki M; Lahtonen K; Hirsimäki M; Valden M
    J Chem Phys; 2007 Jan; 126(3):034703. PubMed ID: 17249892
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activity-structure correlation of Pt/Ru catalysts for the electrodecomposition of methanol: the importance of RuO(2) and PtRu alloying.
    Wei YC; Liu CW; Wang KW
    Chemphyschem; 2009 Jun; 10(8):1230-7. PubMed ID: 19396843
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The structure and crystallization of thin water films on Pt(111).
    Zimbitas G; Haq S; Hodgson A
    J Chem Phys; 2005 Nov; 123(17):174701. PubMed ID: 16375551
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation.
    Cui X; Shi J; Chen H; Zhang L; Guo L; Gao J; Li J
    J Phys Chem B; 2008 Sep; 112(38):12024-31. PubMed ID: 18754636
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Atomic rearrangements during the electrochemical treatments of Au(111) covered with irreversibly adsorbed Sb.
    Jung C; Rhee CK
    J Phys Chem B; 2005 May; 109(18):8961-6. PubMed ID: 16852066
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Growth of nanocrystalline MoO3 on Au(111) studied by in situ scanning tunneling microscopy.
    Biener MM; Biener J; Schalek R; Friend CM
    J Chem Phys; 2004 Dec; 121(23):12010-6. PubMed ID: 15634164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A coverage-dependent study of pt spontaneously deposited onto Au and Ru surfaces: direct experimental evidence of the ensemble effect for methanol electro-oxidation on Pt.
    Du B; Tong Y
    J Phys Chem B; 2005 Sep; 109(38):17775-80. PubMed ID: 16853276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.