BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17804004)

  • 1. Size and shape separation of gold nanoparticles with preparative gel electrophoresis.
    Xu X; Caswell KK; Tucker E; Kabisatpathy S; Brodhacker KL; Scrivens WA
    J Chromatogr A; 2007 Oct; 1167(1):35-41. PubMed ID: 17804004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation and recovery of intact gold-virus complex by agarose electrophoresis and electroelution: application to the purification of cowpea mosaic virus and colloidal gold complex.
    Soto CM; Blum AS; Wilson CD; Lazorcik J; Kim M; Gnade B; Ratna BR
    Electrophoresis; 2004 Sep; 25(17):2901-6. PubMed ID: 15349927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced detection of gold nanoparticles in agarose gel electrophoresis.
    Hasenoehrl C; Alexander CM; Azzarelli NN; Dabrowiak JC
    Electrophoresis; 2012 Apr; 33(8):1251-4. PubMed ID: 22589102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophoretic separation of gold nanoparticles according to bifunctional molecules-induced charge and size.
    Kim JY; Kim HB; Jang DJ
    Electrophoresis; 2013 Mar; 34(6):911-6. PubMed ID: 23335036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape and size selective separation of gold nanoclusters by competitive complexation with octadecylamine monolayers at the air-water interface.
    Pasricha R; Singh A; Sastry M
    J Colloid Interface Sci; 2009 May; 333(1):380-8. PubMed ID: 19211109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single laser pulse induced aggregation of gold nanoparticles.
    Matsuo N; Muto H; Miyajima K; Mafuné F
    Phys Chem Chem Phys; 2007 Dec; 9(45):6027-31. PubMed ID: 18004417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-purity separation of gold nanoparticle dimers and trimers.
    Chen G; Wang Y; Tan LH; Yang M; Tan LS; Chen Y; Chen H
    J Am Chem Soc; 2009 Apr; 131(12):4218-9. PubMed ID: 19275162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm.
    Perrault SD; Chan WC
    J Am Chem Soc; 2009 Dec; 131(47):17042-3. PubMed ID: 19891442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation-induced synthesis of gold nanoparticles within lamellar phases. Formation of aligned colloidal gold by radiolysis.
    Meyre ME; Tréguer-Delapierre M; Faure C
    Langmuir; 2008 May; 24(9):4421-5. PubMed ID: 18402491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size.
    Sonavane G; Tomoda K; Sano A; Ohshima H; Terada H; Makino K
    Colloids Surf B Biointerfaces; 2008 Aug; 65(1):1-10. PubMed ID: 18499408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete functional gold nanoparticles: hydrogen bond-assisted synthesis, magnetic purification, supramolecular dimer and trimer formation.
    Chak CP; Xuan S; Mendes PM; Yu JC; Cheng CH; Leung KC
    ACS Nano; 2009 Aug; 3(8):2129-38. PubMed ID: 19621879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of the transition point between quasi-spherical and cubic nanoparticles in a two-step seed-mediated growth method.
    Dovgolevsky E; Haick H
    Small; 2008 Nov; 4(11):2059-66. PubMed ID: 18932188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape.
    Lu L; Ai K; Ozaki Y
    Langmuir; 2008 Feb; 24(3):1058-63. PubMed ID: 18177060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sonochemical intercalation of preformed gold nanoparticles into multilayered clays.
    Belova V; Möhwald H; Shchukin DG
    Langmuir; 2008 Sep; 24(17):9747-53. PubMed ID: 18652497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immuno-EM using colloidal metal nanoparticles and electron spectroscopic imaging for co-localization at high spatial resolution.
    Bleher R; Kandela I; Meyer DA; Albrecht RM
    J Microsc; 2008 Jun; 230(Pt 3):388-95. PubMed ID: 18503664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis and characterization of Au-nanostructures by metal tolerant fungi.
    Gupta S; Devi S; Singh K
    J Basic Microbiol; 2011 Dec; 51(6):601-6. PubMed ID: 21953675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry.
    Wang Y; He X; Wang K; Zhang X; Tan W
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):75-9. PubMed ID: 19481910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and spectroscopic characterization of gold nanoparticles.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):80-5. PubMed ID: 18155956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photothermal lens detection of gold nanoparticles: theory and experiments.
    Brusnichkin AV; Nedosekin DA; Proskurnin MA; Zharov VP
    Appl Spectrosc; 2007 Nov; 61(11):1191-201. PubMed ID: 18028698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue.
    Eck W; Craig G; Sigdel A; Ritter G; Old LJ; Tang L; Brennan MF; Allen PJ; Mason MD
    ACS Nano; 2008 Nov; 2(11):2263-72. PubMed ID: 19206392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.