BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

979 related articles for article (PubMed ID: 17804159)

  • 1. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions.
    Oliveira WE; Franca AS; Oliveira LS; Rocha SD
    J Hazard Mater; 2008 Apr; 152(3):1073-81. PubMed ID: 17804159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters.
    Oliveira LS; Franca AS; Alves TM; Rocha SD
    J Hazard Mater; 2008 Jul; 155(3):507-12. PubMed ID: 18226444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves.
    Sangi MR; Shahmoradi A; Zolgharnein J; Azimi GH; Ghorbandoost M
    J Hazard Mater; 2008 Jul; 155(3):513-22. PubMed ID: 18191021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk).
    Saeed A; Iqbal M; Akhtar MW
    J Hazard Mater; 2005 Jan; 117(1):65-73. PubMed ID: 15621354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal removal from aqueous solutions by activated phosphate rock.
    Elouear Z; Bouzid J; Boujelben N; Feki M; Jamoussi F; Montiel A
    J Hazard Mater; 2008 Aug; 156(1-3):412-20. PubMed ID: 18242833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.
    Boudrahem F; Aissani-Benissad F; Aït-Amar H
    J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of EDTA on divalent metal adsorption onto grape stalk and exhausted coffee wastes.
    Escudero C; Gabaldón C; Marzal P; Villaescusa I
    J Hazard Mater; 2008 Apr; 152(2):476-85. PubMed ID: 17706350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies.
    Bayramoğlu G; Yakup Arica M
    Bioresour Technol; 2009 Jan; 100(1):186-93. PubMed ID: 18632265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of zinc from aqueous solution using Azadirachta indica bark: equilibrium and kinetic studies.
    King P; Anuradha K; Lahari SB; Prasanna Kumar Y; Prasad VS
    J Hazard Mater; 2008 Mar; 152(1):324-9. PubMed ID: 17681426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.
    Gupta VK; Rastogi A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust.
    Rafatullah M; Sulaiman O; Hashim R; Ahmad A
    J Hazard Mater; 2009 Oct; 170(2-3):969-77. PubMed ID: 19520510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel.
    Feng N; Guo X; Liang S; Zhu Y; Liu J
    J Hazard Mater; 2011 Jan; 185(1):49-54. PubMed ID: 20965652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal ion removal from aqueous solution using physic seed hull.
    Mohammad M; Maitra S; Ahmad N; Bustam A; Sen TK; Dutta BK
    J Hazard Mater; 2010 Jul; 179(1-3):363-72. PubMed ID: 20362390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic studies for the biosorption of lead and copper ions by Penicillium simplicissimum immobilized within loofa sponge.
    Li XM; Liao DX; Xu XQ; Yang Q; Zeng GM; Zheng W; Guo L
    J Hazard Mater; 2008 Nov; 159(2-3):610-5. PubMed ID: 18403109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and isotherm studies of Cu(II) biosorption onto valonia tannin resin.
    Sengil IA; Ozacar M; Türkmenler H
    J Hazard Mater; 2009 Mar; 162(2-3):1046-52. PubMed ID: 18620804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls.
    Rao MM; Ramana DK; Seshaiah K; Wang MC; Chien SW
    J Hazard Mater; 2009 Jul; 166(2-3):1006-13. PubMed ID: 19135782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.