These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 17805370)
1. Proposal for optical fiber designs with ultrahigh effective area and small bending loss applicable to long haul communications. Oskouei MS; Makouei S; Rostami A; Kanani ZD Appl Opt; 2007 Sep; 46(25):6330-9. PubMed ID: 17805370 [TBL] [Abstract][Full Text] [Related]
2. Fiber designs with significantly reduced nonlinearity for very long distance transmission. Hattori HT; Safaai-Jazi A Appl Opt; 1998 May; 37(15):3190-7. PubMed ID: 18273268 [TBL] [Abstract][Full Text] [Related]
3. Dispersion-optimized optical fiber for high-speed long-haul dense wavelength division multiplexing transmission. Wu J; Chen L; Li Q; Wu W; Sun K; Wu X Appl Opt; 2011 Jul; 50(20):3538-46. PubMed ID: 21743564 [TBL] [Abstract][Full Text] [Related]
4. Non-zero dispersion-shifted ring fiber for the orbital angular momentum mode. Zhao W; Wang Y; Li SA; Geng W; Bao C; Fang Y; Wang Z; Liu YG; Ren Y; Pan Z; Yue Y Opt Express; 2021 Aug; 29(16):25428-25438. PubMed ID: 34614874 [TBL] [Abstract][Full Text] [Related]
6. Hole-assisted lightguide fibers with small negative dispersion and low dispersion slope. Hu DJ; Shum P; Ren G; Lu C Appl Opt; 2008 Sep; 47(27):5061-4. PubMed ID: 18806868 [TBL] [Abstract][Full Text] [Related]
7. Design of highly nonlinear photonic crystal fibers with flattened chromatic dispersion. Li X; Xu Z; Ling W; Liu P Appl Opt; 2014 Oct; 53(29):6682-7. PubMed ID: 25322369 [TBL] [Abstract][Full Text] [Related]
8. Dispersion, birefringence, and amplification characteristics of newly designed dispersion compensating hole-assisted fibers. Saitoh K; Varshney SK; Koshiba M Opt Express; 2007 Dec; 15(26):17724-35. PubMed ID: 19551069 [TBL] [Abstract][Full Text] [Related]
9. Wavelength dispersion of optical fibers directly measured by ''difference method'' in the 0.8-1.6 microm range. Sugimura A; Daikoku K Rev Sci Instrum; 1979 Mar; 50(3):343. PubMed ID: 18699505 [TBL] [Abstract][Full Text] [Related]
10. Circular gradient-diameter photonic crystal fiber with large mode area and low bending loss. Han J; Liu E; Liu J J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):533-539. PubMed ID: 31044972 [TBL] [Abstract][Full Text] [Related]
11. Fast and broadband fiber dispersion measurement with dense wavelength sampling. Ponzo GM; Petrovich MN; Feng X; Horak P; Poletti F; Petropoulos P; Richardson DJ Opt Express; 2014 Jan; 22(1):943-53. PubMed ID: 24515054 [TBL] [Abstract][Full Text] [Related]
12. Characterization of microstructured optical fibers for wideband dispersion compensation. Poli F; Cucinotta A; Fuochi M; Selleri S; Vincetti L J Opt Soc Am A Opt Image Sci Vis; 2003 Oct; 20(10):1958-62. PubMed ID: 14570109 [TBL] [Abstract][Full Text] [Related]
13. Large-effective-area dispersion-compensating fiber design based on dual-core microstructure. Prabhakar G; Peer A; Rastogi V; Kumar A Appl Opt; 2013 Jul; 52(19):4505-9. PubMed ID: 23842244 [TBL] [Abstract][Full Text] [Related]
14. Bending-loss studies of a single-mode triangular-index fiber with a depressed cladding ring with a vector-mode method. Allard PG; Yip GL Appl Opt; 1994 Nov; 33(33):7725-32. PubMed ID: 20962982 [TBL] [Abstract][Full Text] [Related]
15. Accurate Measurements of the Zero-Dispersion Wavelength in Optical Fibers. Mechels SE; Schlager JB; Franzen DL J Res Natl Inst Stand Technol; 1997; 102(3):333-347. PubMed ID: 27805150 [TBL] [Abstract][Full Text] [Related]
16. A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation. Zhang WQ; Afshar V S; Monro TM Opt Express; 2009 Oct; 17(21):19311-27. PubMed ID: 20372667 [TBL] [Abstract][Full Text] [Related]