These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 17805384)

  • 1. No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image. 1. Methods.
    Grisan E; Frassetto F; Da Deppo V; Naletto G; Ruggeri A
    Appl Opt; 2007 Sep; 46(25):6434-41. PubMed ID: 17805384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberration estimation from single point image in a simulated adaptive optics system.
    Grisan E; Frassetto F; Da Deppo V; Naletto G; Ruggeri A
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():3173-6. PubMed ID: 17282918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual optics under the wavefront perspective.
    Faria-e-Sousa SJ; Victor G; Alves MR
    Arq Bras Oftalmol; 2014 Aug; 77(4):267-70. PubMed ID: 25410183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes.
    Doble N; Miller DT; Yoon G; Williams DR
    Appl Opt; 2007 Jul; 46(20):4501-14. PubMed ID: 17579706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The optics of wavefront sensing.
    Thibos LN
    Ophthalmol Clin North Am; 2004 Jun; 17(2):111-7, v. PubMed ID: 15207554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VioBio lab adaptive optics: technology and applications by women vision scientists.
    Marcos S; Benedí-García C; Aissati S; Gonzalez-Ramos AM; Lago CM; Radhkrishnan A; Romero M; Vedhakrishnan S; Sawides L; Vinas M
    Ophthalmic Physiol Opt; 2020 Mar; 40(2):75-87. PubMed ID: 32147855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monochromatic ocular wavefront aberrations in the awake-behaving cat.
    Huxlin KR; Yoon G; Nagy L; Porter J; Williams D
    Vision Res; 2004; 44(18):2159-69. PubMed ID: 15183683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics.
    Fernández EJ; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 2005 Sep; 22(9):1732-8. PubMed ID: 16211799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-loop adaptive optics using a spatial light modulator for sensing and compensating of optical aberrations in ophthalmic applications.
    Akondi V; Jewel MA; Vohnsen B
    J Biomed Opt; 2014 Sep; 19(9):96014. PubMed ID: 25253296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavefront analysis in post-LASIK eyes and its correlation with visual symptoms, refraction, and topography.
    Chalita MR; Chavala S; Xu M; Krueger RR
    Ophthalmology; 2004 Mar; 111(3):447-53. PubMed ID: 15019317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Derivation of the refraction equations for higher-order aberrations of local wavefronts at oblique incidence.
    Esser G; Becken W; Müller W; Baumbach P; Arasa J; Uttenweiler D
    J Opt Soc Am A Opt Image Sci Vis; 2010 Feb; 27(2):218-37. PubMed ID: 20126233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [From scattering to wavefront. Healing optics].
    Semchishen V; Mrokhen M
    Vestn Oftalmol; 2004; 120(1):42-5. PubMed ID: 15017779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.
    Rocha KM; Vabre L; Chateau N; Krueger RR
    J Refract Surg; 2010 Jan; 26(1):52-6. PubMed ID: 20199013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correcting highly aberrated eyes using large-stroke adaptive optics.
    Sabesan R; Ahmad K; Yoon G
    J Refract Surg; 2007 Nov; 23(9):947-52. PubMed ID: 18041252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting wavefront error from Shack-Hartmann images using spatial demodulation.
    Sarver EJ; Schwiegerling J; Applegate RA
    J Refract Surg; 2006 Nov; 22(9):949-53. PubMed ID: 17124895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the optical field on the human retina from wavefront aberration data.
    Barbero S; Marcos S
    J Opt Soc Am A Opt Image Sci Vis; 2008 Sep; 25(9):2280-5. PubMed ID: 18758554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image. 2. Tests.
    Naletto G; Frassetto F; Codogno N; Grisan E; Bonora S; Da Deppo V; Ruggeri A
    Appl Opt; 2007 Sep; 46(25):6427-33. PubMed ID: 17805383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zernike radial slope polynomials for wavefront reconstruction and refraction.
    Nam J; Thibos LN; Iskander DR
    J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):1035-48. PubMed ID: 19340280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye.
    Hofer H; Sredar N; Queener H; Li C; Porter J
    Opt Express; 2011 Jul; 19(15):14160-71. PubMed ID: 21934779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement and comparison of the optical performance of an ophthalmic lens based on a Hartmann-Shack wavefront sensor in real viewing conditions.
    Zhou C; Wang W; Yang K; Chai X; Ren Q
    Appl Opt; 2008 Dec; 47(34):6434-41. PubMed ID: 19037372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.