BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 17805529)

  • 41. Effects of some organic pollutants on the exopolysaccharides (EPSs) produced by some Pseudomonas spp. strains.
    Onbasli D; Aslim B
    J Hazard Mater; 2009 Aug; 168(1):64-7. PubMed ID: 19304385
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electron transfer patterns of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri.
    Raffalt AC; Schmidt L; Christensen HE; Chi Q; Ulstrup J
    J Inorg Biochem; 2009 May; 103(5):717-22. PubMed ID: 19217165
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Absence of evidence for metabolite-modulated association between alpha-glycerol-3-phosphate dehydrogenase and L-lactate dehydrogenase.
    Lehoux EA; Baker SM; Kovina MV; Hays FA; Spivey HO
    Biochemistry; 2003 May; 42(20):6259-63. PubMed ID: 12755630
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of siderophores of Pseudomonas stutzeri.
    Zawadzka AM; Vandecasteele FP; Crawford RL; Paszczynski AJ
    Can J Microbiol; 2006 Dec; 52(12):1164-76. PubMed ID: 17473886
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Induction of lactic acid oxidation in Mycobacterium 279.
    Szymona M; Szumilo T
    Acta Microbiol Pol; 1968; 17(3):231-9. PubMed ID: 4177302
    [No Abstract]   [Full Text] [Related]  

  • 46. Enhancement of L-2-haloacid dehalogenase expression in Pseudomonas stutzeri DEH138 based on the different substrate specificity between dehalogenase-producing bacteria and their dehalogenases.
    Wang Y; Xin Y; Cao X; Xue S
    World J Microbiol Biotechnol; 2015 Apr; 31(4):669-73. PubMed ID: 25666179
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A spectrophotometric assay for the determination of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase activity.
    Bernal C; Mendez E; Terencio J; Boronat A; Imperial S
    Anal Biochem; 2005 May; 340(2):245-51. PubMed ID: 15840497
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolism of D- and L-lactate by Pseudomonas putida.
    O'Brien RW
    Aust J Biol Sci; 1977 Dec; 30(6):553-8. PubMed ID: 614007
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Growth rate of a non-fermentative Escherichia coli strain is influenced by NAD+ regeneration.
    Vázquez-Limón C; Vega-Badillo J; Martínez A; Espinosa-Molina G; Gosset G; Soberón X; López-Munguía A; Osuna J
    Biotechnol Lett; 2007 Dec; 29(12):1857-63. PubMed ID: 17934696
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Induction of NADPH-linked D-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by D-xylose, L-arabinose, or D-galactose.
    Bolen PL; Detroy RW
    Biotechnol Bioeng; 1985 Mar; 27(3):302-7. PubMed ID: 18553673
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation and characterization of Pseudomonas stutzeri QZ1 from an anoxic sulfide-oxidizing bioreactor.
    Mahmood Q; Zheng P; Hu B; Jilani G; Azim MR; Wu D; Liu D
    Anaerobe; 2009 Aug; 15(4):108-15. PubMed ID: 19351560
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Regularities in the kinetic of photoactivation of lactate dehydrogenase by the action of UV light in different microenvironment].
    Artiukhov VG; Lysenko IuA; Nakvasina MA
    Biofizika; 2000; 45(3):427-31. PubMed ID: 10872053
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hypoxia/anoxia as signaling for increased alcohol dehydrogenase activity in saffron (Crocus sativus L.) corm.
    Keyhani E; Keyhani J
    Ann N Y Acad Sci; 2004 Dec; 1030():449-57. PubMed ID: 15659829
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization and potential application of purified aldehyde oxidase from Pseudomonas stutzeri IFO12695.
    Uchida H; Fukuda T; Satoh Y; Okamura Y; Toriyama A; Yamashita A; Aisaka K; Sakurai T; Nagaosa Y; Uwajima T
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):53-6. PubMed ID: 15657722
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of the D-lactate stereospecific dehydrogenase of Limulus polyphemus with active-site regions of L-lactate dehydrogenases.
    Siebenaller JF; Orr TL; Olwin BB; Taylor SS
    Biochim Biophys Acta; 1983 Dec; 749(2):153-62. PubMed ID: 6652095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of the respiratory chain in Ethanologenic Zymomonas mobilis with a cyanide-resistant bd-type ubiquinol oxidase as the only terminal oxidase and its possible physiological roles.
    Sootsuwan K; Lertwattanasakul N; Thanonkeo P; Matsushita K; Yamada M
    J Mol Microbiol Biotechnol; 2008; 14(4):163-75. PubMed ID: 18089934
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coexistence of two d-lactate-utilizing systems in Pseudomonas putida KT2440.
    Zhang Y; Jiang T; Sheng B; Long Y; Gao C; Ma C; Xu P
    Environ Microbiol Rep; 2016 Oct; 8(5):699-707. PubMed ID: 27264531
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalytic properties of three lactate dehydrogenases from potato tubers (Solanum tuberosum).
    Rothe GM
    Arch Biochem Biophys; 1974 May; 162(1):17-21. PubMed ID: 4364697
    [No Abstract]   [Full Text] [Related]  

  • 59. Basis of the stereospecific preference of porcine kidney fibroblasts for D-2-hydroxy-4-methylthiobutanoic acid as a source of methionine.
    Schreiner CL; Jones EE
    J Nutr; 1988 Jul; 118(7):818-28. PubMed ID: 3292726
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of accessible immobilized NAD(+) concentration on the bioaffinity chromatographic behavior of NAD(+)-dependent dehydrogenases using the kinetic locking-on strategy.
    Mulcahy P; O'Flaherty M; McMahon M; Oakey L
    Protein Expr Purif; 1999 Jul; 16(2):261-75. PubMed ID: 10419823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.