These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17806089)

  • 1. Overcoming the inadequacies or limitations of experimental structures as drug targets by using computational modeling tools and molecular dynamics simulations.
    Marco E; Gago F
    ChemMedChem; 2007 Oct; 2(10):1388-401. PubMed ID: 17806089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Representing receptor flexibility in ligand docking through relevant normal modes.
    Cavasotto CN; Kovacs JA; Abagyan RA
    J Am Chem Soc; 2005 Jul; 127(26):9632-40. PubMed ID: 15984891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Only subtle protein conformational adaptations are required for ligand binding to thyroid hormone receptors: simulations using a novel multipoint steered molecular dynamics approach.
    Martínez L; Polikarpov I; Skaf MS
    J Phys Chem B; 2008 Aug; 112(34):10741-51. PubMed ID: 18681473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational selection of protein kinase A revealed by flexible-ligand flexible-protein docking.
    Huang Z; Wong CF
    J Comput Chem; 2009 Mar; 30(4):631-44. PubMed ID: 18711718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling correlated main-chain motions in proteins for flexible molecular recognition.
    Zavodszky MI; Lei M; Thorpe MF; Day AR; Kuhn LA
    Proteins; 2004 Nov; 57(2):243-61. PubMed ID: 15340912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of shape-matching and docking as virtual screening tools.
    Hawkins PC; Skillman AG; Nicholls A
    J Med Chem; 2007 Jan; 50(1):74-82. PubMed ID: 17201411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approximate method in using molecular mechanics simulations to study slow protein conformational changes.
    Yang L; Gao YQ
    J Phys Chem B; 2007 Mar; 111(11):2969-75. PubMed ID: 17319713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DASH: a novel analysis method for molecular dynamics simulation data. Analysis of ligands of PPAR-gamma.
    Salt DW; Hudson BD; Banting L; Ellis MJ; Ford MG
    J Med Chem; 2005 May; 48(9):3214-20. PubMed ID: 15857127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated annealing coupled replica exchange molecular dynamics--an efficient conformational sampling method.
    Kannan S; Zacharias M
    J Struct Biol; 2009 Jun; 166(3):288-94. PubMed ID: 19272454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding estimation after refinement, a new automated procedure for the refinement and rescoring of docked ligands in virtual screening.
    Rastelli G; Degliesposti G; Del Rio A; Sgobba M
    Chem Biol Drug Des; 2009 Mar; 73(3):283-6. PubMed ID: 19207463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational chemistry approaches to drug discovery in signal transduction.
    Fischer PM
    Biotechnol J; 2008 Apr; 3(4):452-70. PubMed ID: 18412174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining docking and molecular dynamic simulations in drug design.
    Alonso H; Bliznyuk AA; Gready JE
    Med Res Rev; 2006 Sep; 26(5):531-68. PubMed ID: 16758486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors.
    Ferrari AM; Degliesposti G; Sgobba M; Rastelli G
    Bioorg Med Chem; 2007 Dec; 15(24):7865-77. PubMed ID: 17870536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic mechanism of cyclophilin as observed in molecular dynamics simulations: pathway prediction and reconciliation of X-ray crystallographic and NMR solution data.
    Trzesniak D; van Gunsteren WF
    Protein Sci; 2006 Nov; 15(11):2544-51. PubMed ID: 17075133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations.
    Chang CE; Trylska J; Tozzini V; McCammon JA
    Chem Biol Drug Des; 2007 Jan; 69(1):5-13. PubMed ID: 17313452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of novel HIV entry inhibitors for the CXCR4 receptor by prospective virtual screening.
    Pérez-Nueno VI; Pettersson S; Ritchie DW; Borrell JI; Teixidó J
    J Chem Inf Model; 2009 Apr; 49(4):810-23. PubMed ID: 19358515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical proteomic tool for ligand mapping of CYP antitargets: an NMR-compatible 3D QSAR descriptor in the Heme-Based Coordinate System.
    Yao H; Costache AD; Sem DS
    J Chem Inf Comput Sci; 2004; 44(4):1456-65. PubMed ID: 15272854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.