These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 17806122)

  • 1. Acute toxicity and irritation of water-based dextran-coated magnetic fluid injected in mice.
    Yu Z; Xiaoliang W; Xuman W; Hong X; Hongchen G
    J Biomed Mater Res A; 2008 Jun; 85(3):582-7. PubMed ID: 17806122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Security evaluation of subcutaneous injection with water-based dextran-coated magnetic fluid].
    Zhai Y; Wang X; Wang X; Xie H; Gu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1275-8. PubMed ID: 17228725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hyperthermia with dextran magnetic fluid on the growth of grafted H22 tumor in mice.
    Zhai Y; Xie H; Gu H
    Int J Hyperthermia; 2009 Feb; 25(1):65-71. PubMed ID: 19219702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy.
    Hou CH; Hou SM; Hsueh YS; Lin J; Wu HC; Lin FH
    Biomaterials; 2009 Aug; 30(23-24):3956-60. PubMed ID: 19446329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy.
    Gogoi M; Jaiswal MK; Sarma HD; Bahadur D; Banerjee R
    Integr Biol (Camb); 2017 Jun; 9(6):555-565. PubMed ID: 28513646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical applications of magnetic nanoparticles for hyperthermia.
    Thiesen B; Jordan A
    Int J Hyperthermia; 2008 Sep; 24(6):467-74. PubMed ID: 18608593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo.
    Jordan A; Scholz R; Wust P; Fähling H; Krause J; Wlodarczyk W; Sander B; Vogl T; Felix R
    Int J Hyperthermia; 1997; 13(6):587-605. PubMed ID: 9421741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model.
    Johannsen M; Thiesen B; Jordan A; Taymoorian K; Gneveckow U; Waldöfner N; Scholz R; Koch M; Lein M; Jung K; Loening SA
    Prostate; 2005 Aug; 64(3):283-92. PubMed ID: 15726645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia.
    Latorre M; Rinaldi C
    P R Health Sci J; 2009 Sep; 28(3):227-38. PubMed ID: 19715115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method.
    Lahonian M; Golneshan AA
    IEEE Trans Nanobioscience; 2011 Dec; 10(4):262-8. PubMed ID: 22271797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro.
    Jordan A; Wust P; Scholz R; Tesche B; Fähling H; Mitrovics T; Vogl T; Cervós-Navarro J; Felix R
    Int J Hyperthermia; 1996; 12(6):705-22. PubMed ID: 8950152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted hyperthermia using dextran magnetite complex: a new treatment modality for liver tumors.
    Mitsumori M; Hiraoka M; Shibata T; Okuno Y; Nagata Y; Nishimura Y; Abe M; Hasegawa M; Nagae H; Ebisawa Y
    Hepatogastroenterology; 1996; 43(12):1431-7. PubMed ID: 8975944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles.
    Wang L; Dong J; Ouyang W; Wang X; Tang J
    Oncol Rep; 2012 Mar; 27(3):719-26. PubMed ID: 22134718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia.
    Gneveckow U; Jordan A; Scholz R; Brüss V; Waldöfner N; Ricke J; Feussner A; Hildebrandt B; Rau B; Wust P
    Med Phys; 2004 Jun; 31(6):1444-51. PubMed ID: 15259647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models.
    Southern P; Pankhurst QA
    Int J Hyperthermia; 2018 Sep; 34(6):671-686. PubMed ID: 29046072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanohyperthermia of malignant tumors. II. In vivo tumor heating with manganese perovskite nanoparticles.
    Bubnovskaya L; Belous A; Solopan A; Podoltsev A; Kondratenko I; Kovelskaya A; Sergienko T; Osinsky S
    Exp Oncol; 2012 Dec; 34(4):336-9. PubMed ID: 23302992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer.
    Hervault A; Thanh NT
    Nanoscale; 2014 Oct; 6(20):11553-73. PubMed ID: 25212238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.