These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Atomic structures of multi-walled boron nitride nanohorns. Nishiwaki A; Oku T J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i9-14. PubMed ID: 16157650 [TBL] [Abstract][Full Text] [Related]
3. Decoration of nitrogen vacancies by oxygen atoms in boron nitride nanotubes. Petravic M; Peter R; Kavre I; Li LH; Chen Y; Fan LJ; Yang YW Phys Chem Chem Phys; 2010 Dec; 12(47):15349-53. PubMed ID: 20967376 [TBL] [Abstract][Full Text] [Related]
4. Preparation and electrochemical hydrogen storage of boron nitride nanotubes. Chen X; Gao XP; Zhang H; Zhou Z; Hu WK; Pan GL; Zhu HY; Yan TY; Song DY J Phys Chem B; 2005 Jun; 109(23):11525-9. PubMed ID: 16852412 [TBL] [Abstract][Full Text] [Related]
5. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy. Terauchi M Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665 [TBL] [Abstract][Full Text] [Related]
6. Structural characteristics of hydrogenated carbon and boron nitride nanotubes: impact of H-H interactions. Tanskanen JT; Linnolahti M; Karttunen AJ; Pakkanen TA Chemphyschem; 2008 Nov; 9(16):2390-6. PubMed ID: 18830994 [TBL] [Abstract][Full Text] [Related]
7. High-temperature thermal stability and axial compressive properties of a coaxial carbon nanotube inside a boron nitride nanotube. Liew KM; Yuan J Nanotechnology; 2011 Feb; 22(8):085701. PubMed ID: 21242624 [TBL] [Abstract][Full Text] [Related]
8. Self-assembly and cathodoluminescence of microbelts from Cu-doped boron nitride nanotubes. Chen ZG; Zou J; Liu Q; Sun C; Liu G; Yao X; Li F; Wu B; Yuan XL; Sekiguchi T; Cheng HM; Lu GQ ACS Nano; 2008 Aug; 2(8):1523-32. PubMed ID: 19206355 [TBL] [Abstract][Full Text] [Related]
9. Static and dynamic properties of single-walled boron nitride nanotubes. Li C; Chou TW J Nanosci Nanotechnol; 2006 Jan; 6(1):54-60. PubMed ID: 16573069 [TBL] [Abstract][Full Text] [Related]
10. Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique. Arenal R; Stephan O; Cochon JL; Loiseau A J Am Chem Soc; 2007 Dec; 129(51):16183-9. PubMed ID: 18052251 [TBL] [Abstract][Full Text] [Related]
11. Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes. Arenal R; Stéphan O; Kociak M; Taverna D; Loiseau A; Colliex C Phys Rev Lett; 2005 Sep; 95(12):127601. PubMed ID: 16197110 [TBL] [Abstract][Full Text] [Related]
12. In situ observation of reversible rippling in multi-walled boron nitride nanotubes. Ghassemi HM; Lee CH; Yap YK; Yassar RS Nanotechnology; 2011 Mar; 22(11):115702. PubMed ID: 21297235 [TBL] [Abstract][Full Text] [Related]
13. Defects-enhanced dissociation of H2 on boron nitride nanotubes. Wu X; Yang J; Hou JG; Zhu Q J Chem Phys; 2006 Feb; 124(5):054706. PubMed ID: 16468900 [TBL] [Abstract][Full Text] [Related]
14. Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm. Huang Y; Lin J; Tang C; Bando Y; Zhi C; Zhai T; Dierre B; Sekiguchi T; Golberg D Nanotechnology; 2011 Apr; 22(14):145602. PubMed ID: 21346299 [TBL] [Abstract][Full Text] [Related]
15. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores. Kowalczyk P; Gauden PA; Terzyk AP J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395 [TBL] [Abstract][Full Text] [Related]
16. Optical gap measurements on individual boron nitride nanotubes by electron energy loss spectroscopy. Arenal R; Stéphan O; Kociak M; Taverna D; Loiseau A; Colliex C Microsc Microanal; 2008 Jun; 14(3):274-82. PubMed ID: 18482472 [TBL] [Abstract][Full Text] [Related]
17. Theoretical investigation of the divacancies in boron nitride nanotubes: properties and surface reactivity toward various adsorbates. Zhao JX; Ding YH J Chem Phys; 2009 Jul; 131(1):014706. PubMed ID: 19586116 [TBL] [Abstract][Full Text] [Related]
18. Excitons at the B K edge of boron nitride nanotubes probed by x-ray absorption spectroscopy. Pacilé D; Papagno M; Skála T; Matolín V; Sainsbury T; Ikuno T; Okawa D; Zettl A; Prince KC J Phys Condens Matter; 2010 Jul; 22(29):295301. PubMed ID: 21399297 [TBL] [Abstract][Full Text] [Related]
19. Photoluminescence of self-trapped excitons in boron nitride nanotubes. Williams RT; Ucer KB; Carroll DL; Berzina B; Trinkler L; Korsak V; Krutohvostov R J Nanosci Nanotechnol; 2008 Dec; 8(12):6504-8. PubMed ID: 19205230 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of hydrogen molecules on the platinum-doped boron nitride nanotubes. Wu X; Yang JL; Zeng XC J Chem Phys; 2006 Jul; 125(4):44704. PubMed ID: 16942171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]