BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17812339)

  • 1. Crustal Thickness on the Mid-Atlantic Ridge: Bull's-Eye Gravity Anomalies and Focused Accretion.
    Tolstoy M; Harding AJ; Orcutt JA
    Science; 1993 Oct; 262(5134):726-9. PubMed ID: 17812339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spreading rate dependence of gravity anomalies along oceanic transform faults.
    Gregg PM; Lin J; Behn MD; Montési LG
    Nature; 2007 Jul; 448(7150):183-7. PubMed ID: 17625563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seismic evidence for uniform crustal accretion along slow-spreading ridges in the equatorial Atlantic Ocean.
    Wang Z; Singh SC
    Nat Commun; 2022 Dec; 13(1):7809. PubMed ID: 36528618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spreading-rate dependence of melt extraction at mid-ocean ridges from mantle seismic refraction data.
    Lizarralde D; Gaherty JB; Collins JA; Hirth G; Kim SD
    Nature; 2004 Dec; 432(7018):744-7. PubMed ID: 15592410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence from gabbro of the Troodos ophiolite for lateral magma transport along a slow-spreading mid-ocean ridge.
    Abelson M; Baer G; Agnon A
    Nature; 2001 Jan; 409(6816):72-5. PubMed ID: 11343114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field.
    Singh SC; Crawford WC; Carton H; Seher T; Combier V; Cannat M; Pablo Canales J; Düsünür D; Escartin J; Miranda JM
    Nature; 2006 Aug; 442(7106):1029-32. PubMed ID: 16943836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variations in the formation of oceanic lithosphere.
    Bonatti E; Ligi M; Brunelli D; Cipriani A; Fabretti P; Ferrante V; Gasperini L; Ottolini L
    Nature; 2003 May; 423(6939):499-505. PubMed ID: 12774114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Widespread active detachment faulting and core complex formation near 13 degrees N on the Mid-Atlantic Ridge.
    Smith DK; Cann JR; Escartín J
    Nature; 2006 Jul; 442(7101):440-3. PubMed ID: 16871215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere.
    Escartín J; Smith DK; Cann J; Schouten H; Langmuir CH; Escrig S
    Nature; 2008 Oct; 455(7214):790-4. PubMed ID: 18843367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reykjanes "V"-shaped ridges originating from a pulsing and dehydrating mantle plume.
    Ito G
    Nature; 2001 Jun; 411(6838):681-4. PubMed ID: 11395767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How supercontinents and superoceans affect seafloor roughness.
    Whittaker JM; Müller RD; Roest WR; Wessel P; Smith WH
    Nature; 2008 Dec; 456(7224):938-41. PubMed ID: 19092932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge.
    Jokat W; Ritzmann O; Schmidt-Aursch MC; Drachev S; Gauger S; Snow J
    Nature; 2003 Jun; 423(6943):962-5. PubMed ID: 12827194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the Crustal and Upper Mantle Seismic Structure From 0-27 Ma in the Equatorial Atlantic Ocean at 2° 43'S.
    Vaddineni VA; Singh SC; Grevemeyer I; Audhkhasi P; Papenberg C
    J Geophys Res Solid Earth; 2021 Jun; 126(6):e2020JB021390. PubMed ID: 35865731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geology of the Crust and Mantle, Western United States: Geophysical data reveal a thin crust and anomalous upper mantle characteristic of active regions.
    Thompson GA; Talwani M
    Science; 1964 Dec; 146(3651):1539-49. PubMed ID: 17775979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seismic reflection images of the Moho underlying melt sills at the East Pacific Rise.
    Singh SC; Harding AJ; Kent GM; Sinha MC; Combier V; Bazin S; Tong CH; Pye JW; Barton PJ; Hobbs RW; White RS; Orcutt JA
    Nature; 2006 Jul; 442(7100):287-90. PubMed ID: 16855587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crustal processes of the mid-ocean ridge.
    East Pacific Rise Study Group
    Science; 1981 Jul; 213(4503):31-40. PubMed ID: 17741167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zircon dating of oceanic crustal accretion.
    Lissenberg CJ; Rioux M; Shimizu N; Bowring SA; Mével C
    Science; 2009 Feb; 323(5917):1048-50. PubMed ID: 19179492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence from three-dimensional seismic reflectivity images for enhanced melt supply beneath mid-ocean-ridge discontinuities.
    Kent GM; Singh SC; Harding AJ; Sinha MC; Orcutt JA; Barton PJ; White RS; Bazin S; Hobbs RW; Tong CH; Pye JW
    Nature; 2000 Aug; 406(6796):614-8. PubMed ID: 10949299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Off-axis crustal thickness across and along the east pacific rise within the MELT area.
    Canales JP; Detrick RS; Bazin S; Harding AJ; Orcutt JA
    Science; 1998 May; 280(5367):1218-21. PubMed ID: 9596565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of ridge migration on the magmatic segmentation of mid-ocean ridges.
    Carbotte SM; Small C; Donnelly K
    Nature; 2004 Jun; 429(6993):743-6. PubMed ID: 15201906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.