These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17817430)

  • 1. Atomic force microscopy of the electrochemical nucleation and growth of molecular crystals.
    Hillier AC; Ward MD
    Science; 1994 Mar; 263(5151):1261-4. PubMed ID: 17817430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolayers of twisted binaphthyls for aromatic crystallization at low nucleation densities and high growth rates.
    Jeong SM; Park JW
    J Am Chem Soc; 2008 Mar; 130(11):3497-501. PubMed ID: 18288840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface morphology and kinetic properties in rapid growth of EAFP protein crystals investigated by atomic force microscopy.
    Wang S; Li G; Xiang Y; Huang RH; Zhang Y; Wang DC
    Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):826-31. PubMed ID: 15930648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of impurity-poisoned protein crystal surfaces.
    Plomp M; McPherson A; Malkin AJ
    Proteins; 2003 Feb; 50(3):486-95. PubMed ID: 12557190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the electrocrystallization parameters of semiconducting Co[TCNQ]2-based materials to yield either single nanowires or crystalline thin films.
    Nafady A; Bond AM; Bilyk A; Harris AR; Bhatt AI; O'Mullane AP; De Marco R
    J Am Chem Soc; 2007 Feb; 129(8):2369-82. PubMed ID: 17263534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid self-assembly of alpha-synuclein observed by in situ atomic force microscopy.
    Hoyer W; Cherny D; Subramaniam V; Jovin TM
    J Mol Biol; 2004 Jun; 340(1):127-39. PubMed ID: 15184027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface processes in the crystallization of turnip yellow mosaic virus visualized by atomic force microscopy.
    Malkin AJ; Kuznetsov YG; Lucas RW; McPherson A
    J Struct Biol; 1999 Aug; 127(1):35-43. PubMed ID: 10479615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unstitching the nanoscopic mystery of zeolite crystal formation.
    Brent R; Cubillas P; Stevens SM; Jelfs KE; Umemura A; Gebbie JT; Slater B; Terasaki O; Holden MA; Anderson MW
    J Am Chem Soc; 2010 Oct; 132(39):13858-68. PubMed ID: 20839849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation and growth of cobalt nanostructures on highly oriented pyrolytic graphite.
    Poon SW; Pan JS; Tok ES
    Phys Chem Chem Phys; 2006 Jul; 8(28):3326-34. PubMed ID: 16835681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental three-dimensional description of the liquid hexadecane/graphite interface.
    Van LP; Kyrylyuk V; Polesel-Maris J; Thoyer F; Lubin C; Cousty J
    Langmuir; 2009 Jan; 25(2):639-42. PubMed ID: 19072577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time in situ atomic force microscopy imaging of bismuth crystal growth.
    Dale SE; Bending SJ; Peter LM
    Langmuir; 2009 Oct; 25(19):11228-31. PubMed ID: 19788205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.
    Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF
    J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ observation of the surface processes involved in dissolution from the cleavage surface of calcite in aqueous solution using combined scanning electrochemical-atomic force microscopy (SECM-AFM).
    Jones CE; Unwin PR; Macpherson JV
    Chemphyschem; 2003 Feb; 4(2):139-46. PubMed ID: 12619412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface structure of metal-organic framework grown on self-assembled monolayers revealed by high-resolution atomic force microscopy.
    Szelagowska-Kunstman K; Cyganik P; Goryl M; Zacher D; Puterova Z; Fischer RA; Szymonski M
    J Am Chem Soc; 2008 Nov; 130(44):14446-7. PubMed ID: 18850705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of localized nanorod formation and patterns of semiconducting CuTCNQ phase I crystals by scanning electrochemical microscopy.
    Neufeld AK; O'Mullane AP; Bond AM
    J Am Chem Soc; 2005 Oct; 127(40):13846-53. PubMed ID: 16201805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy.
    Eliaz N; Eliyahu M
    J Biomed Mater Res A; 2007 Mar; 80(3):621-34. PubMed ID: 17051536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface topography of the p3 and p6 annexin V crystal forms determined by atomic force microscopy.
    Reviakine I; Bergsma-Schutter W; Mazères-Dubut C; Govorukhina N; Brisson A
    J Struct Biol; 2000 Sep; 131(3):234-9. PubMed ID: 11052896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface.
    Yokota S; Ueno T; Kitaoka T; Wariishi H
    Carbohydr Res; 2007 Dec; 342(17):2593-8. PubMed ID: 17889844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single layer growth of sub-micron metal-organic framework crystals observed by in situ atomic force microscopy.
    John NS; Scherb C; Shöâeè M; Anderson MW; Attfield MP; Bein T
    Chem Commun (Camb); 2009 Nov; (41):6294-6. PubMed ID: 19826699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.