BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17822092)

  • 1. Effect of natural organic matter on zinc inhibition of hematite bioreduction by Shewanella putrefaciens CN32.
    Stone JJ; Royer RA; Dempsey BA; Burgos WD
    Environ Sci Technol; 2007 Aug; 41(15):5284-90. PubMed ID: 17822092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32.
    Luan F; Burgos WD; Xie L; Zhou Q
    Environ Sci Technol; 2010 Jan; 44(1):184-90. PubMed ID: 19957913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of hematite bioreduction by natural organic matter.
    Royer RA; Burgos WD; Fisher AS; Jeon BH; Unz RF; Dempsey BA
    Environ Sci Technol; 2002 Jul; 36(13):2897-904. PubMed ID: 12144265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of electron transfer mediators on the bioreduction of lepidocrocite (gamma-FeOOH) by Shewanella putrefaciens CN32.
    O'Loughlin EJ
    Environ Sci Technol; 2008 Sep; 42(18):6876-82. PubMed ID: 18853803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation.
    Royer RA; Burgos WD; Fisher AS; Unz RF; Dempsey BA
    Environ Sci Technol; 2002 May; 36(9):1939-46. PubMed ID: 12026974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of biological reductive dissolution of hematite by ferrous iron.
    Royer RA; Dempsey BA; Jeon BH; Burgos WD
    Environ Sci Technol; 2004 Jan; 38(1):187-93. PubMed ID: 14740735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of humic acid on bioreduction of facet-dependent hematite by Shewanella putrefaciens CN-32.
    Lu Y; Hu S; Zhang H; Song Q; Zhou W; Shen X; Xia D; Yang Y; Zhu H; Liu C
    Sci Total Environ; 2022 Nov; 849():157713. PubMed ID: 35914600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of clay-associated humic substances in catalyzing bioreduction of structural Fe(III) in nontronite by Shewanella putrefaciens CN32.
    Zuo H; Kukkadapu R; Zhu Z; Ni S; Huang L; Zeng Q; Liu C; Dong H
    Sci Total Environ; 2020 Nov; 741():140213. PubMed ID: 32603937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products.
    O'Loughlin EJ; Gorski CA; Scherer MM; Boyanov MI; Kemner KM
    Environ Sci Technol; 2010 Jun; 44(12):4570-6. PubMed ID: 20476735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of electron donor/acceptor concentrations on hydrous ferric oxide (HFO) bioreduction.
    Fredrickson JK; Kota S; Kukkadapu RK; Liu C; Zachara JM
    Biodegradation; 2003 Apr; 14(2):91-103. PubMed ID: 12877465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of bound phosphate on the bioreduction of lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3) and formation of secondary minerals.
    O'Loughlin EJ; Boyanov MI; Flynn TM; Gorski CA; Hofmann SM; McCormick ML; Scherer MM; Kemner KM
    Environ Sci Technol; 2013 Aug; 47(16):9157-66. PubMed ID: 23909690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of natural organic matter in chemical and microbial reduction of ferric iron.
    Chen J; Gu B; Royer RA; Burgos WD
    Sci Total Environ; 2003 May; 307(1-3):167-78. PubMed ID: 12711432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens strain CN32.
    Liu C; Zachara JM; Gorby YA; Szecsody JE; Brown CF
    Environ Sci Technol; 2001 Apr; 35(7):1385-93. PubMed ID: 11348071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?
    Pédrot M; Le Boudec A; Davranche M; Dia A; Henin O
    J Colloid Interface Sci; 2011 Jul; 359(1):75-85. PubMed ID: 21482426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32.
    Huo YC; Li WW; Chen CB; Li CX; Zeng R; Lau TC; Huang TY
    Enzyme Microb Technol; 2016 Dec; 95():236-241. PubMed ID: 27866621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates.
    Shimizu M; Zhou J; Schröder C; Obst M; Kappler A; Borch T
    Environ Sci Technol; 2013; 47(23):13375-84. PubMed ID: 24219167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reductive dechlorination of carbon tetrachloride by bioreduction of nontronite.
    Bae S; Joo JB; Lee W
    J Hazard Mater; 2017 Jul; 334():104-111. PubMed ID: 28402894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.
    Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF
    Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of Ni-substituted hydrous ferric oxide by an Fe(III)-reducing bacterium.
    Fredrickson JK; Zachara JM; Kukkadapu RK; Gorby YA; Smith SC; Brown CF
    Environ Sci Technol; 2001 Feb; 35(4):703-12. PubMed ID: 11349281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological reduction of nanoengineered iron(III) oxide sculptured thin films.
    Tan H; Ezekoye OK; Van der Schalie J; Horn MW; Lakhtakia A; Xu J; Burgos WD
    Environ Sci Technol; 2006 Sep; 40(17):5490-5. PubMed ID: 16999129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.