BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17822122)

  • 21. A new supported Cu/Pd bimetallic nanoparticles composites prestoring reductant for nitrate removal: high reactivity and N
    Shen Z; Peng G; Shi J; Ya G
    Environ Sci Pollut Res Int; 2021 Oct; 28(37):51786-51794. PubMed ID: 33990920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of several parameters on catalytic denitrification of water by the use of H2 in the presence of O2 over metal supported catalysts.
    Theologides CP; Savva PG; Olympiou GG; Pantelidou NA; Constantinou BK; Chatziiona VK; Valanidou LY; Piskopianou CT; Costa CN
    Water Sci Technol; 2013; 68(10):2309-15. PubMed ID: 24292483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water.
    Garron A; Epron F
    Water Res; 2005 Aug; 39(13):3073-81. PubMed ID: 15982701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Practical application of Pd-based bimetallic catalysts with enhanced selectivity supported by chelating resin for catalytic nitrate reduction in real water.
    Zang L; Shi J; Shen Z
    Nanotechnology; 2023 Jul; 34(39):. PubMed ID: 37356427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic reduction of N2O over Ag-Pd/Al2O3 bimetallic catalysts.
    Tzitzios VK; Georgakilas V
    Chemosphere; 2005 May; 59(6):887-91. PubMed ID: 15811418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methionine bound to Pd/γ-Al2O3 catalysts studied by solid-state (13)C NMR.
    Johnson RL; Schwartz TJ; Dumesic JA; Schmidt-Rohr K
    Solid State Nucl Magn Reson; 2015 Nov; 72():64-72. PubMed ID: 26422257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts.
    Yin J; Shan S; Ng MS; Yang L; Mott D; Fang W; Kang N; Luo J; Zhong CJ
    Langmuir; 2013 Jul; 29(29):9249-58. PubMed ID: 23841935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability of Sn-Pd-Kaolinite catalyst during heat treatment and nitrate reduction in continuous flow reaction.
    Hamid S; Golagana S; Han S; Lee G; Babaa MR; Lee W
    Chemosphere; 2020 Feb; 241():125115. PubMed ID: 31683419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis, structural characterization and catalytic application of citrate-stabilized monometallic and bimetallic palladium@copper nanoparticles in microbial anti-activities.
    Ullah I; Khan K; Sohail M; Ullah K; Ullah A; Shaheen S
    Int J Nanomedicine; 2017; 12():8735-8747. PubMed ID: 29276383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication and characterization of a Cu-Pd-TNPs polymetallic nanoelectrode for electrochemically removing nitrate from groundwater.
    Lei X; Liu F; Li M; Ma X; Wang X; Zhang H
    Chemosphere; 2018 Dec; 212():237-244. PubMed ID: 30145415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction.
    Qian H; Zhao Z; Velazquez JC; Pretzer LA; Heck KN; Wong MS
    Nanoscale; 2014 Jan; 6(1):358-64. PubMed ID: 24195966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unified Metallic Catalyst Aging Strategy and Implications for Water Treatment.
    Lee CS; Guo S; Rho H; Levi J; Garcia-Segura S; Wong MS; Gardea-Torresdey J; Westerhoff P
    Environ Sci Technol; 2021 Jul; ():. PubMed ID: 34309365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.
    Chang X; Liu AF; Cai B; Luo JY; Pan H; Huang YB
    ChemSusChem; 2016 Dec; 9(23):3330-3337. PubMed ID: 27863073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate.
    Choe JK; Bergquist AM; Jeong S; Guest JS; Werth CJ; Strathmann TJ
    Water Res; 2015 Sep; 80():267-80. PubMed ID: 26005787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrocatalytic hydrodehalogenation of atrazine in aqueous solution by Cu@Pd/Ti catalyst.
    Chen YL; Xiong L; Song XN; Wang WK; Huang YX; Yu HQ
    Chemosphere; 2015 Apr; 125():57-63. PubMed ID: 25697805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper catalysts for soot oxidation: alumina versus perovskite supports.
    López-Suárez FE; Bueno-López A; Illán-Gómez MJ; Adamski A; Ura B; Trawczynski J
    Environ Sci Technol; 2008 Oct; 42(20):7670-5. PubMed ID: 18983091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formic acid as an alternative reducing agent for the catalytic nitrate reduction in aqueous media.
    Choi EK; Park KH; Lee HB; Cho M; Ahn S
    J Environ Sci (China); 2013 Aug; 25(8):1696-702. PubMed ID: 24520710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts.
    Wang F; Zhang H; He D
    Environ Technol; 2014; 35(1-4):347-54. PubMed ID: 24600874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination.
    Nutt MO; Hughes JB; Michael SW
    Environ Sci Technol; 2005 Mar; 39(5):1346-53. PubMed ID: 15787376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing methods to deposit Pd-In catalysts on hydrogen-permeable hollow-fiber membranes for nitrate reduction.
    Levi J; Guo S; Kavadiya S; Luo Y; Lee CS; Jacobs HP; Holman Z; Wong MS; Garcia-Segura S; Zhou C; Rittmann BE; Westerhoff P
    Water Res; 2023 May; 235():119877. PubMed ID: 36989800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.