BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17822125)

  • 1. Investigation of the reduction of lead dioxide by natural organic matter.
    Dryer DJ; Korshin GV
    Environ Sci Technol; 2007 Aug; 41(15):5510-4. PubMed ID: 17822125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of lead oxide (PbO2) and release of Pb(II) in mixtures of natural organic matter, free chlorine and monochloramine.
    Lin YP; Valentine RL
    Environ Sci Technol; 2009 May; 43(10):3872-7. PubMed ID: 19544901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The release of lead from the reduction of lead oxide (PbO2) by natural organic matter.
    Lin YP; Valentine RL
    Environ Sci Technol; 2008 Feb; 42(3):760-5. PubMed ID: 18323099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of lead oxide (PbO2) by iodide and formation of iodoform in the PbO2/I(-)/NOM system.
    Lin YP; Washburn MP; Valentine RL
    Environ Sci Technol; 2008 Apr; 42(8):2919-24. PubMed ID: 18497144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of Pb(II)/Pb(IV) solid phases with chlorine and their effects on lead release.
    Liu H; Korshin GV; Ferguson JF
    Environ Sci Technol; 2009 May; 43(9):3278-84. PubMed ID: 19534147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling monochloramine loss in the presence of natural organic matter.
    Duirk SE; Gombert B; Croué JP; Valentine RL
    Water Res; 2005 Sep; 39(14):3418-31. PubMed ID: 16045963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of natural organic matter on the morphology of corroding lead surfaces and behavior of lead-containing particles.
    Korshin GV; Ferguson JF; Lancaster AN
    Water Res; 2005 Mar; 39(5):811-8. PubMed ID: 15743626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PbO2(s, plattnerite) reductive dissolution by natural organic matter: reductant and inhibitory subfractions.
    Shi Z; Stone AT
    Environ Sci Technol; 2009 May; 43(10):3604-11. PubMed ID: 19544861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release of Pb(II) from monochloramine-mediated reduction of lead oxide (PbO2).
    Lin YP; Valentine RL
    Environ Sci Technol; 2008 Dec; 42(24):9137-43. PubMed ID: 19174883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of UV/H(2)O(2) advanced oxidation on chemical characteristics and chlorine reactivity of surface water natural organic matter.
    Sarathy S; Mohseni M
    Water Res; 2010 Jul; 44(14):4087-96. PubMed ID: 20554308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferrate(VI) pretreatment of water containing natural organic matter, bromide, and iodide: A potential strategy to control soluble lead release from PbO
    Liu J; Mulenos MR; Hockaday WC; Sayes CM; Sharma VK
    Chemosphere; 2021 Jan; 263():128035. PubMed ID: 33297053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine.
    Batista APS; Teixeira ACSC; Cooper WJ; Cottrell BA
    Water Res; 2016 Apr; 93():20-29. PubMed ID: 26878479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone.
    Swietlik J; Sikorska E
    Water Res; 2004 Oct; 38(17):3791-9. PubMed ID: 15350431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential UV-vis absorbance can characterize the reaction of organic matter with ClO
    Huang S; Gan W; Yan M; Zhang X; Zhong Y; Yang X
    Water Res; 2018 Aug; 139():442-449. PubMed ID: 29723804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of iodinated organic compounds by oxidation of iodide-containing waters with manganese dioxide.
    Gallard H; Allard S; Nicolau R; von Gunten U; Croué JP
    Environ Sci Technol; 2009 Sep; 43(18):7003-9. PubMed ID: 19806734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of lead(IV) oxide (PbO2) reductive dissolution: role of lead(II) adsorption and surface speciation.
    Wang Y; Wu J; Wang Z; Terenyi A; Giammar DE
    J Colloid Interface Sci; 2013 Jan; 389(1):236-43. PubMed ID: 23062963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter.
    Yang X; Guo W; Lee W
    Chemosphere; 2013 Jun; 91(11):1477-85. PubMed ID: 23312737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of NOM chlorination reactions by conventional and stop-flow differential absorbance spectroscopy.
    Korshin GV; Benjamin MM; Chang HS; Gallard H
    Environ Sci Technol; 2007 Apr; 41(8):2776-81. PubMed ID: 17533838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated Pb(II) release from the reduction of Pb(IV) corrosion product PbO2 induced by bromide-catalyzed monochloramine decomposition.
    Zhang Y; Lin YP
    Environ Sci Technol; 2013 Oct; 47(19):10931-8. PubMed ID: 23984629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Structural Arrangement and Relative Abundance of Aliphatic Units May Effect Long-Wave Absorbance of Natural Organic Matter as Revealed by
    Perminova IV; Shirshin EA; Konstantinov AI; Zherebker A; Lebedev VA; Dubinenkov IV; Kulikova NA; Nikolaev EN; Bulygina E; Holmes RM
    Environ Sci Technol; 2018 Nov; 52(21):12526-12537. PubMed ID: 30296078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.