These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17822311)

  • 1. Food analysis on microfluidic devices using ultrasensitive carbon nanotubes detectors.
    Crevillén AG; Avila M; Pumera M; González MC; Escarpa A
    Anal Chem; 2007 Oct; 79(19):7408-15. PubMed ID: 17822311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms.
    Crevillén AG; Pumera M; González MC; Escarpa A
    Lab Chip; 2009 Jan; 9(2):346-53. PubMed ID: 19107295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube disposable detectors in microchip capillary electrophoresis for water-soluble vitamin determination: analytical possibilities in pharmaceutical quality control.
    Crevillén AG; Pumera M; González MC; Escarpa A
    Electrophoresis; 2008 Jul; 29(14):2997-3004. PubMed ID: 18576364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing.
    Sameenoi Y; Mensack MM; Boonsong K; Ewing R; Dungchai W; Chailapakul O; Cropek DM; Henry CS
    Analyst; 2011 Aug; 136(15):3177-84. PubMed ID: 21698305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacture and evaluation of carbon nanotube modified screen-printed electrodes as electrochemical tools.
    Fanjul-Bolado P; Queipo P; Lamas-Ardisana PJ; Costa-García A
    Talanta; 2007 Dec; 74(3):427-33. PubMed ID: 18371659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microchips for CE: breakthroughs in real-world food analysis.
    Escarpa A; González MC; López Gil MA; Crevillén AG; Hervás M; García M
    Electrophoresis; 2008 Dec; 29(24):4852-61. PubMed ID: 19130567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real sample analysis on microfluidic devices.
    Crevillén AG; Hervás M; López MA; González MC; Escarpa A
    Talanta; 2007 Dec; 74(3):342-57. PubMed ID: 18371648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical sensing systems for microfluidic devices: a review.
    Kuswandi B; Nuriman ; Huskens J; Verboom W
    Anal Chim Acta; 2007 Oct; 601(2):141-55. PubMed ID: 17920386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotubes based optical immunodetection of Staphylococcal Enterotoxin B (SEB) in food.
    Yang M; Kostov Y; Rasooly A
    Int J Food Microbiol; 2008 Sep; 127(1-2):78-83. PubMed ID: 18632175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation-based analysis of fluid flow and electrokinetic phenomena in microfluidic devices.
    Krishnamoorthy S; Bedekar AS; Feng J; Sundaram S
    Clin Lab Med; 2007 Mar; 27(1):41-59. PubMed ID: 17416301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube and diamond as electrochemical detectors in microchip and conventional capillary electrophoresis.
    Chen G
    Talanta; 2007 Dec; 74(3):326-32. PubMed ID: 18371646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples.
    Panini NV; Messina GA; Salinas E; Fernández H; Raba J
    Biosens Bioelectron; 2008 Feb; 23(7):1145-51. PubMed ID: 18162392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas sensing properties of platinum derivatives of single-walled carbon nanotubes: A DFT analysis.
    Pannopard P; Khongpracha P; Probst M; Limtrakul J
    J Mol Graph Model; 2009 Aug; 28(1):62-9. PubMed ID: 19473862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid sample screening method for authenticity controlling vanilla flavors using a CE microchip approach with electrochemical detection.
    Avila M; González MC; Zougagh M; Escarpa A; Ríos A
    Electrophoresis; 2007 Nov; 28(22):4233-9. PubMed ID: 17941116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube-based electrochemical sensors for quantifying the 'heat' of chilli peppers: the adsorptive stripping voltammetric determination of capsaicin.
    Kachoosangi RT; Wildgoose GG; Compton RG
    Analyst; 2008 Jul; 133(7):888-95. PubMed ID: 18575641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The preferential electrocatalytic behaviour of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains.
    Crevillen AG; Pumera M; Gonzalez MC; Escarpa A
    Analyst; 2009 Apr; 134(4):657-62. PubMed ID: 19305913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical behavior and voltammetric determination of norfloxacin at glassy carbon electrode modified with multi walled carbon nanotubes/Nafion.
    Huang KJ; Liu X; Xie WZ; Yuan HX
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):269-74. PubMed ID: 18358704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated microfluidic systems for DNA analysis.
    Njoroge SK; Chen HW; Witek MA; Soper SA
    Top Curr Chem; 2011; 304():203-60. PubMed ID: 21607848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma-activated multi-walled carbon nanotube-polystyrene composite substrates for biosensing.
    Fernández-Sánchez C; Pellicer E; Orozco J; Jiménez-Jorquera C; Lechuga LM; Mendoza E
    Nanotechnology; 2009 Aug; 20(33):335501. PubMed ID: 19636101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events.
    Wang J; Liu G; Jan MR
    J Am Chem Soc; 2004 Mar; 126(10):3010-1. PubMed ID: 15012105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.