These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 17822745)

  • 21. Past, present, and future exceedance of critical loads of acidity for surface waters in Finland.
    Posch M; Aherne J; Forsius M; Rask M
    Environ Sci Technol; 2012 Apr; 46(8):4507-14. PubMed ID: 22428776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Mapping critical loads of acid deposition for Chinese surface waters using a steady-state method].
    Ye X; Hao J; Duan L; Zhou Z
    Huan Jing Ke Xue; 2002 May; 23(3):18-22. PubMed ID: 12145930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential acidifying capacity of deposition experiences from regions with high NH4+ and dry deposition in China.
    Vogt RD; Seip HM; Larssen T; Zhao D; Xiang R; Xiao J; Luo J; Zhao Y
    Sci Total Environ; 2006 Aug; 367(1):394-404. PubMed ID: 16515804
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modelling recovery from soil acidification in European forests under climate change.
    Reinds GJ; Posch M; Leemans R
    Sci Total Environ; 2009 Oct; 407(21):5663-73. PubMed ID: 19647858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A regional approach for mineral soil weathering estimation and critical load assessment in boreal Saskatchewan, Canada.
    Whitfield CJ; Watmough SA
    Sci Total Environ; 2012 Oct; 437():165-72. PubMed ID: 22940479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eutrophication trends in forest soils in Galicia (NW Spain) caused by the atmospheric deposition of nitrogen compounds.
    Rodríguez L; Macías F
    Chemosphere; 2006 Jun; 63(9):1598-609. PubMed ID: 16307780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical loads and their exceedances at intensive forest monitoring sites in Europe.
    Lorenz M; Nagel HD; Granke O; Kraft P
    Environ Pollut; 2008 Oct; 155(3):426-35. PubMed ID: 18395313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of climate change on three-dimensional dynamic critical load functions.
    Wu W; Driscoll CT
    Environ Sci Technol; 2010 Jan; 44(2):720-6. PubMed ID: 20020745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vegetation uptake of nitrogen and base cations in China and its role in soil acidification.
    Duan L; Huang Y; Hao J; Xie S; Hou M
    Sci Total Environ; 2004 Sep; 330(1-3):187-98. PubMed ID: 15325168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulating the long-term chemistry of an upland UK catchment: major solutes and acidification.
    Tipping E; Lawlor AJ; Lofts S
    Environ Pollut; 2006 May; 141(1):151-66. PubMed ID: 16236408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mercury fluxes and pools in three subtropical forested catchments, southwest China.
    Wang Z; Zhang X; Xiao J; Zhijia C; Yu P
    Environ Pollut; 2009 Mar; 157(3):801-8. PubMed ID: 19121554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the "SAFE" model.
    Małek S; Martinson L; Sverdrup H
    Environ Pollut; 2005 Oct; 137(3):568-73. PubMed ID: 16005767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrogen critical loads for alpine vegetation and soils in Rocky Mountain National Park.
    Bowman WD; Murgel J; Blett T; Porter E
    J Environ Manage; 2012 Jul; 103():165-71. PubMed ID: 22516810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Will PM control undermine China's efforts to reduce soil acidification?
    Zhao Y; Duan L; Lei Y; Xing J; Nielsen CP; Hao J
    Environ Pollut; 2011 Oct; 159(10):2726-32. PubMed ID: 21676509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlinearities in source receptor relationships for sulfur and nitrogen compounds.
    Fowler D; Muller J; Smith RI; Cape JN; Erisman JW
    Ambio; 2005 Feb; 34(1):41-6. PubMed ID: 15789517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling changes in forest soil chemistry at 16 Swedish coniferous forest sites following deposition reduction.
    Belyazid S; Westling O; Sverdrup H
    Environ Pollut; 2006 Nov; 144(2):596-609. PubMed ID: 16515827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accumulation of different sulfur fractions in Chinese forest soil under acid deposition.
    Wang Z; Zhang X; Zhang Y; Wang Z; Mulder J
    J Environ Monit; 2011 Sep; 13(9):2463-70. PubMed ID: 21779600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of air pollution on ecosystems and biological diversity in the eastern United States.
    Lovett GM; Tear TH; Evers DC; Findlay SE; Cosby BJ; Dunscomb JK; Driscoll CT; Weathers KC
    Ann N Y Acad Sci; 2009 Apr; 1162():99-135. PubMed ID: 19432647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recovery from acidification of Finnish lakes: regional patterns and relations to emission reduction policy.
    Forsius M; Vuorenmaa J; Mannio J; Syri S
    Sci Total Environ; 2003 Jul; 310(1-3):121-32. PubMed ID: 12812736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA.
    Nanus L; Clow DW; Saros JE; Stephens VC; Campbell DH
    Environ Pollut; 2012 Jul; 166():125-35. PubMed ID: 22504426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.