BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1782327)

  • 1. Anti-ligand antibodies as potential autoantigens: in vitro and in vivo characteristics of anti-bungarotoxin antibodies in the idiotype network.
    Pachner AR; Itano AA; McCallum RM; Ricalton NS
    Autoimmunity; 1991; 10(2):145-52. PubMed ID: 1782327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and modulation of the immune response of mice to acetylcholine receptor by anti-idiotypes.
    Souroujon MC; Barchan D; Fuchs S
    Immunol Lett; 1985; 9(6):331-6. PubMed ID: 3874156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of a cholinergic binding site by means of synthetic peptides, monoclonal antibodies, and alpha-bungarotoxin.
    Conti-Tronconi BM; Tang F; Diethelm BM; Spencer SR; Reinhardt-Maelicke S; Maelicke A
    Biochemistry; 1990 Jul; 29(26):6221-30. PubMed ID: 2207067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monoclonal anti-acetylcholine receptor antibodies as probes for human acetylcholine-receptor in myasthenia gravis.
    Vincent A; Whiting PJ; Heidenreich F; Roberts A
    J Recept Res; 1988; 8(1-4):143-59. PubMed ID: 3260283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of an antiidiotypic antibody with acetylcholine-receptor-like binding properties from myasthenia gravis patients.
    Eng H; Lefvert AK
    Ann Inst Pasteur Immunol; 1988; 139(5):569-80. PubMed ID: 3264701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo effects of neonatal administration of antiidiotype antibodies on experimental autoimmune myasthenia gravis.
    Verschuuren JJ; Graus YM; Van Breda Vriesman PJ; Tzartos S; De Baets MH
    Autoimmunity; 1991; 10(3):173-9. PubMed ID: 1756222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of human-Torpedo hybrid acetylcholine receptor (AChR) for analysing the subunit specificity of antibodies in sera from patients with myasthenia gravis (MG).
    Loutrari H; Kokla A; Trakas N; Tzartos SJ
    Clin Exp Immunol; 1997 Sep; 109(3):538-46. PubMed ID: 9328134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-idiotypic antibodies to anti-acetylcholine receptor antibody: characterization by ELISA and immunoprecipitation assays.
    Pachner AR; Sourojon M; Fuchs S
    J Neuroimmunol; 1986 Sep; 12(3):205-14. PubMed ID: 3488332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoclonal antibodies to the acetylcholine receptor by a normally functioning auto-anti-idiotypic mechanism.
    Cleveland WL; Wassermann NH; Sarangarajan R; Penn AS; Erlanger BF
    Nature; 1983 Sep 1-7; 305(5929):56-7. PubMed ID: 6604226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Torpedo-mouse hybrid acetylcholine receptors reveals immunodominance of the alpha subunit in myasthenia gravis antisera.
    Loutrari H; Tzartos SJ; Claudio T
    Eur J Immunol; 1992 Nov; 22(11):2949-56. PubMed ID: 1385157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monoclonal anti-idiotopic antibodies against myasthenia-inducing anti-acetylcholine receptor monoclonal antibodies. Preponderance of nonparatope-directed antibodies affecting antigen binding.
    Agius MA; Geannopoulos CJ; Fairclough RH; Richman DP
    J Immunol; 1988 Jan; 140(1):62-8. PubMed ID: 3257231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylcholine receptor antibody characteristics in myasthenia gravis. Fractionation of alpha-bungarotoxin binding site antibodies and their relationship to IgG subclass.
    Whiting PJ; Vincent A; Newsom-Davis J
    J Neuroimmunol; 1983 Aug; 5(1):1-9. PubMed ID: 6874919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. beta-Bungarotoxin binding protein is immunogenic but lacks myasthenogenicity in rats.
    Qiao J; Wang ZY; Link H
    J Neurol Sci; 1994 Feb; 121(2):190-3. PubMed ID: 8158214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of the main immunogenic region of the Torpedo acetylcholine receptor.
    Morell SW; Trinh VB; Gudipati E; Friend A; Page NA; Agius MA; Richman DP; Fairclough RH
    Mol Immunol; 2014 Mar; 58(1):116-31. PubMed ID: 24333757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future therapeutic strategies in autoimmune myasthenia gravis.
    Psaridi-Linardaki L; Mamalaki A; Tzartos SJ
    Ann N Y Acad Sci; 2003 Sep; 998():539-48. PubMed ID: 14592926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-acetylcholine receptor antibodies block bungarotoxin binding to native human acetylcholine receptor on the surface of TE671 cells.
    Pachner AR
    Neurology; 1989 Aug; 39(8):1057-61. PubMed ID: 2761699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of acetylcholine receptor-specific human T cell lines using heterobifunctional antibody-targeted antigen presentation.
    Wang D; Nicolle MW
    J Neuroimmunol; 1999 Sep; 99(1):114-21. PubMed ID: 10496184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Idiotypic network connectivity and a possible cause of myasthenia gravis.
    Dwyer DS; Vakil M; Kearney JF
    J Exp Med; 1986 Oct; 164(4):1310-8. PubMed ID: 2428915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor-like activity of a monoclonal anti-idiotypic antibody against an anti-acetylcholine receptor antibody.
    Lefvert AK; Fulpius BW
    Scand J Immunol; 1984 May; 19(5):485-9. PubMed ID: 6729408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protects against antigenic modulation by human sera.
    Tzartos SJ; Sophianos D; Efthimiadis A
    J Immunol; 1985 Apr; 134(4):2343-9. PubMed ID: 3973387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.