These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1782346)

  • 1. Metabolism of the hydrochlorofluorocarbon 1,2-dichloro-1,1-difluoroethane.
    Harris JW; Anders MW
    Chem Res Toxicol; 1991; 4(2):180-6. PubMed ID: 1782346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of 1-fluoro-1,1,2-trichloroethane, 1,2-dichloro-1,1-difluoroethane, and 1,1,1-trifluoro-2-chloroethane.
    Yin H; Jones JP; Anders MW
    Chem Res Toxicol; 1995 Mar; 8(2):262-8. PubMed ID: 7766810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes: the role of cytochrome P450 2E1.
    Urban G; Speerschneider P; Dekant W
    Chem Res Toxicol; 1994; 7(2):170-6. PubMed ID: 8199305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kidney as a novel target tissue for protein adduct formation associated with metabolism of halothane and the candidate chlorofluorocarbon replacement 2,2-dichloro-1,1,1-trifluoroethane.
    Huwyler J; Aeschlimann D; Christen U; Gut J
    Eur J Biochem; 1992 Jul; 207(1):229-38. PubMed ID: 1628651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue acylation by the chlorofluorocarbon substitute 2,2-dichloro-1,1,1-trifluoroethane.
    Harris JW; Pohl LR; Martin JL; Anders MW
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1407-10. PubMed ID: 1996342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of 1,2-dichloro-1-fluoroethane and 1-fluoro-1,2,2-trichloroethane: electronic factors govern the regioselectivity of cytochrome P450-dependent oxidation.
    Yin H; Anders MW; Jones JP
    Chem Res Toxicol; 1996; 9(1):50-7. PubMed ID: 8924616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism and pharmacokinetics of selected halon replacement candidates.
    Dodd DE; Brashear WT; Vinegar A
    Toxicol Lett; 1993 May; 68(1-2):37-47. PubMed ID: 8516773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes.
    Ferrara R; Tolando R; King LJ; Manno M
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):420-8. PubMed ID: 9144458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pentahaloethane-based chlorofluorocarbon substitutes and halothane: correlation of in vivo hepatic protein trifluoroacetylation and urinary trifluoroacetic acid excretion with calculated enthalpies of activation.
    Harris JW; Jones JP; Martin JL; LaRosa AC; Olson MJ; Pohl LR; Anders MW
    Chem Res Toxicol; 1992; 5(5):720-5. PubMed ID: 1446014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow-binding inhibition of carboxylesterase and other serine hydrolases by chlorodifluoroacetaldehyde.
    Yin H; Jones JP; Anders MW
    Chem Res Toxicol; 1993; 6(5):630-4. PubMed ID: 8292740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of cytochrome P450 2E1 in the species-dependent biotransformation of 1,2-dichloro-1,1,2-trifluoroethane in rats and mice.
    Dekant W; Assmann M; Urban G
    Toxicol Appl Pharmacol; 1995 Dec; 135(2):200-7. PubMed ID: 8545828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigations on the liver toxicity of a blend of HCFC-123 (2,2-dichloro-1,1,1-trifluoroethane) and HCFC-124 (2-chloro-1,1,1,2-tetrafluoroethane) in guinea-pigs.
    Hoet P; Buchet JP; Sempoux C; Nomiyama T; Rahier J; Lison D
    Arch Toxicol; 2001 Jul; 75(5):274-83. PubMed ID: 11548120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo metabolism of the hydrochlorofluorocarbon 1,1-dichloro-1-fluoroethane (HCFC-141b).
    Harris JW; Anders MW
    Biochem Pharmacol; 1991 May; 41(9):R13-6. PubMed ID: 2018559
    [No Abstract]   [Full Text] [Related]  

  • 14. Reductive activation of HCFC-123 by methaemalbumin.
    Zanovello A; Ferrara R; Manno M
    Toxicol Lett; 2003 Sep; 144(1):127-36. PubMed ID: 12919730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism in vivo and in vitro of the refrigerant substitute 1,1,1,2-tetrafluoro-2-chloroethane.
    Olson MJ; Johnson JT; O'Gara JF; Surbrook SE
    Drug Metab Dispos; 1991; 19(5):1004-11. PubMed ID: 1686224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trifluoroacetylated proteins in liver and plasma of guinea pigs treated with HCFC-123 and halothane.
    Bortolato S; Zanovello A; Rugge M; Brotto M; Marini S; Gervasi PG; Manno M
    Toxicol Lett; 2003 Sep; 144(1):35-47. PubMed ID: 12919722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-uptake pharmacokinetics and biotransformation of 1,1-dichloro-1-fluoroethane (HCFC-141b).
    Loizou GD; Anders MW
    Drug Metab Dispos; 1993; 21(4):634-9. PubMed ID: 8104122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism and toxicity of hydrochlorofluorocarbons: current knowledge and needs for the future.
    Anders MW
    Environ Health Perspect; 1991 Dec; 96():185-91. PubMed ID: 1820265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of 1,1-dichloro-2,2,2-trifluoroethane in rats.
    Urban G; Dekant W
    Xenobiotica; 1994 Sep; 24(9):881-92. PubMed ID: 7810170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiation of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123)-induced liver toxicity by ethanol in guinea-pigs.
    Hoet P; Buchet JP; Sempoux C; Haufroid V; Rahier J; Lison D
    Arch Toxicol; 2002 Dec; 76(12):707-14. PubMed ID: 12451447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.