These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 17823913)

  • 21. Multiple natriuretic peptides coexist in the most primitive extant ray-finned fish, bichir Polypterus endlicheri.
    Ventura A; Kawakoshi A; Inoue K; Takei Y
    Gen Comp Endocrinol; 2006 May; 146(3):251-6. PubMed ID: 16426609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early members of 'living fossil' lineage imply later origin of modern ray-finned fishes.
    Giles S; Xu GH; Near TJ; Friedman M
    Nature; 2017 Sep; 549(7671):265-268. PubMed ID: 28854173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using linkage models to explore skull kinematic diversity and functional convergence in arthrodire placoderms.
    Anderson PS
    J Morphol; 2010 Aug; 271(8):990-1005. PubMed ID: 20623651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuroanatomical organization of the cholinergic system in the central nervous system of a basal actinopterygian fish, the senegal bichir Polypterus senegalus.
    López JM; Perlado J; Morona R; Northcutt RG; González A
    J Comp Neurol; 2013 Jan; 521(1):24-49. PubMed ID: 22628072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organization of the orexin/hypocretin system in the brain of two basal actinopterygian fishes, the cladistians Polypterus senegalus and Erpetoichthys calabaricus.
    López JM; Sanz-Morello B; González A
    Peptides; 2014 Nov; 61():23-37. PubMed ID: 25169954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo cranial suture function and suture morphology in the extant fish Polypterus: implications for inferring skull function in living and fossil fish.
    Markey MJ; Main RP; Marshall CR
    J Exp Biol; 2006 Jun; 209(Pt 11):2085-102. PubMed ID: 16709911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A primitive sarcopterygian fish with an eyestalk.
    Zhu M; Yu X; Ahlberg PE
    Nature; 2001 Mar; 410(6824):81-4. PubMed ID: 11242045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas.
    Friedman M; Shimada K; Martin LD; Everhart MJ; Liston J; Maltese A; Triebold M
    Science; 2010 Feb; 327(5968):990-3. PubMed ID: 20167784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Architecture of the integument in lower teleostomes: functional morphology and evolutionary implications.
    Gemballa S; Bartsch P
    J Morphol; 2002 Sep; 253(3):290-309. PubMed ID: 12125067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The most primitive osteichthyan braincase?
    Basden AM; Young GC; Coates MI; Ritchie A
    Nature; 2000 Jan; 403(6766):185-8. PubMed ID: 10646601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of cranial muscles in the actinopterygian fish Senegal bichir, Polypterus senegalus Cuvier, 1829.
    Noda M; Miyake T; Okabe M
    J Morphol; 2017 Apr; 278(4):450-463. PubMed ID: 28182295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan.
    Daeschler EB; Shubin NH; Jenkins FA
    Nature; 2006 Apr; 440(7085):757-63. PubMed ID: 16598249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A primitive fish provides key characters bearing on deep osteichthyan phylogeny.
    Zhu M; Yu X; Wang W; Zhao W; Jia L
    Nature; 2006 May; 441(7089):77-80. PubMed ID: 16672968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An exceptionally preserved Late Devonian actinopterygian provides a new model for primitive cranial anatomy in ray-finned fishes.
    Giles S; Darras L; Clément G; Blieck A; Friedman M
    Proc Biol Sci; 2015 Oct; 282(1816):20151485. PubMed ID: 26423841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The development of the tooth pattern and dentigerous bones in Polypterus senegalus (Cladistia, Actinopterygii).
    Wacker K; Bartsch P; Clemen G
    Ann Anat; 2001 Jan; 183(1):37-52. PubMed ID: 11206982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Skull ontogeny: developmental patterns of fishes conserved across major tetrapod clades.
    Schoch RR
    Evol Dev; 2006; 8(6):524-36. PubMed ID: 17073936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fine structural peculiarities of the pectoral fin dermoskeleton of two brachiopterygii, Polypterus senegalus and Calamoichthys calabaricus (Pisces, Osteichthyes).
    Géraudie J
    Anat Rec; 1988 May; 221(1):455-68. PubMed ID: 3389530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurocranial anatomy of an enigmatic Early Devonian fish sheds light on early osteichthyan evolution.
    Clement AM; King B; Giles S; Choo B; Ahlberg PE; Young GC; Long JA
    Elife; 2018 May; 7():. PubMed ID: 29807569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Debeerius ellefseni (Fam. Nov., Gen. Nov., Spec. Nov.), an autodiastylic chondrichthyan from the Mississippian bear gulch limestone of Montana (USA), the relationships of the chondrichthyes, and comments on gnathostome evolution.
    Grogan ED; Lund R
    J Morphol; 2000 Mar; 243(3):219-45. PubMed ID: 10681469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anatomical comparison of the cephalic musculature of some members of the superfamily Myliobatoidea (chondrichthyes): implications for evolutionary understanding.
    González-Isáis M
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Mar; 271(1):259-72. PubMed ID: 12552642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.