BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 17824620)

  • 1. NMR study of the inhibition of pepsin by glyoxal inhibitors: mechanism of tetrahedral intermediate stabilization by the aspartyl proteases.
    Cosgrove S; Rogers L; Hewage CM; Malthouse JP
    Biochemistry; 2007 Oct; 46(39):11205-15. PubMed ID: 17824620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the structure of tetrahedral transition state analogues bound at the active site of chymotrypsin using 18O and 2H isotope shifts in the 13C NMR spectra of glyoxal inhibitors.
    Spink E; Hewage C; Malthouse JP
    Biochemistry; 2007 Nov; 46(44):12868-74. PubMed ID: 17927215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 13C-NMR study of the inhibition of papain by a dipeptide-glyoxal inhibitor.
    Lowther J; Djurdjevic-Pahl A; Hewage C; Malthouse JP
    Biochem J; 2002 Sep; 366(Pt 3):983-7. PubMed ID: 12061892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13C and 1H NMR studies of ionizations and hydrogen bonding in chymotrypsin-glyoxal inhibitor complexes.
    Spink E; Cosgrove S; Rogers L; Hewage C; Malthouse JP
    J Biol Chem; 2007 Mar; 282(11):7852-61. PubMed ID: 17213185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxyanion and tetrahedral intermediate stabilisation by subtilisin: detection of a new tetrahedral adduct.
    Howe N; Rogers L; Hewage C; Malthouse JP
    Biochim Biophys Acta; 2009 Aug; 1794(8):1251-8. PubMed ID: 19393346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 13C-NMR study of the inhibition of delta-chymotrypsin by a tripeptide-glyoxal inhibitor.
    Djurdjevic-Pahl A; Hewage C; Malthouse JP
    Biochem J; 2002 Mar; 362(Pt 2):339-47. PubMed ID: 11853541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 13C- and 1H-NMR studies of oxyanion and tetrahedral intermediate stabilization by the serine proteinases: optimizing inhibitor warhead specificity and potency by studying the inhibition of the serine proteinases by peptide-derived chloromethane and glyoxal inhibitors.
    Malthouse JP
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):566-70. PubMed ID: 17511653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin.
    Petrillo T; O'Donohoe CA; Howe N; Malthouse JP
    Biochemistry; 2012 Aug; 51(31):6164-70. PubMed ID: 22757750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionisations within a subtilisin-glyoxal inhibitor complex.
    Djurdjevic-Pahl A; Hewage C; Malthouse JP
    Biochim Biophys Acta; 2005 May; 1749(1):33-41. PubMed ID: 15848134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 15N and 1H NMR spectroscopy of the catalytic histidine in chloromethyl ketone-inhibited complexes of serine proteases.
    Tsilikounas E; Rao T; Gutheil WG; Bachovchin WW
    Biochemistry; 1996 Feb; 35(7):2437-44. PubMed ID: 8652587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemiacetal stabilization in a chymotrypsin inhibitor complex and the reactivity of the hydroxyl group of the catalytic serine residue of chymotrypsin.
    Cleary JA; Doherty W; Evans P; Malthouse JP
    Biochim Biophys Acta; 2014 Jun; 1844(6):1119-27. PubMed ID: 24657307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlations of the basicity of His 57 with transition state analogue binding, substrate reactivity, and the strength of the low-barrier hydrogen bond in chymotrypsin.
    Lin J; Cassidy CS; Frey PA
    Biochemistry; 1998 Aug; 37(34):11940-8. PubMed ID: 9718318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the interaction between the aspartic peptidase inhibitor SQAPI and aspartic peptidases using surface plasmon resonance.
    Farley PC; Christeller JT; Sullivan ME; Sullivan PA; Laing WA
    J Mol Recognit; 2002; 15(3):135-44. PubMed ID: 12203839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low-barrier hydrogen bond in subtilisin: 1H and 15N NMR studies with peptidyl trifluoromethyl ketones.
    Halkides CJ; Wu YQ; Murray CJ
    Biochemistry; 1996 Dec; 35(49):15941-8. PubMed ID: 8961961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for reversible and irreversible inhibition of human cathepsin L by their respective dipeptidyl glyoxal and diazomethylketone inhibitors.
    Shenoy RT; Sivaraman J
    J Struct Biol; 2011 Jan; 173(1):14-9. PubMed ID: 20850545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying tetrahedral adduct formation and stabilization in the cysteine and the serine proteases.
    Cleary JA; Doherty W; Evans P; Malthouse JP
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1382-91. PubMed ID: 26169698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Synthesis of peptides in organic solvents catalyzed by pepsin].
    Anisimova VV; Lysogorskaia EN; Filippova IIu; Oksenoĭt ES; Stepanov VM
    Bioorg Khim; 1994 Mar; 20(3):316-22. PubMed ID: 8166759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Gly-Pro-pNA cleavage catalyzed by dipeptidyl peptidase-IV and its inhibition by saxagliptin (BMS-477118).
    Kim YB; Kopcho LM; Kirby MS; Hamann LG; Weigelt CA; Metzler WJ; Marcinkeviciene J
    Arch Biochem Biophys; 2006 Jan; 445(1):9-18. PubMed ID: 16364232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new concept for the mechanism of action of chymotrypsin: the role of the low-barrier hydrogen bond.
    Cassidy CS; Lin J; Frey PA
    Biochemistry; 1997 Apr; 36(15):4576-84. PubMed ID: 9109667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-barrier hydrogen bonds and enzymatic catalysis.
    Cleland WW
    Arch Biochem Biophys; 2000 Oct; 382(1):1-5. PubMed ID: 11051090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.