These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 17824744)
1. Non-Debye response for the structural relaxation in glass-forming liquids: test of the Avramov model. Puzenko A; Ishai PB; Paluch M J Chem Phys; 2007 Sep; 127(9):094503. PubMed ID: 17824744 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of glass-forming liquids. IX. Structural versus dielectric relaxation in monohydroxy alcohols. Wang LM; Richert R J Chem Phys; 2004 Dec; 121(22):11170-6. PubMed ID: 15634071 [TBL] [Abstract][Full Text] [Related]
3. Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition. Jakobsen B; Maggi C; Christensen T; Dyre JC J Chem Phys; 2008 Nov; 129(18):184502. PubMed ID: 19045409 [TBL] [Abstract][Full Text] [Related]
4. Insights on the origin of the Debye process in monoalcohols from dielectric spectroscopy under extreme pressure conditions. Fragiadakis D; Roland CM; Casalini R J Chem Phys; 2010 Apr; 132(14):144505. PubMed ID: 20405999 [TBL] [Abstract][Full Text] [Related]
5. Ideal mixing behavior of the debye process in supercooled monohydroxy alcohols. Wang LM; Richert R J Phys Chem B; 2005 May; 109(18):8767-73. PubMed ID: 16852040 [TBL] [Abstract][Full Text] [Related]
6. Prevalence of approximate square root(t) relaxation for the dielectric alpha process in viscous organic liquids. Nielsen AI; Christensen T; Jakobsen B; Niss K; Olsen NB; Richert R; Dyre JC J Chem Phys; 2009 Apr; 130(15):154508. PubMed ID: 19388760 [TBL] [Abstract][Full Text] [Related]
7. Debye type dielectric relaxation and the glass transition of alcohols. Wang LM; Richert R J Phys Chem B; 2005 Jun; 109(22):11091-4. PubMed ID: 16852352 [TBL] [Abstract][Full Text] [Related]
8. Slow Debye-type peak observed in the dielectric response of polyalcohols. Bergman R; Jansson H; Swenson J J Chem Phys; 2010 Jan; 132(4):044504. PubMed ID: 20113046 [TBL] [Abstract][Full Text] [Related]
9. Identification of dielectric and structural relaxations in glass-forming secondary amides. Wang LM; Richert R J Chem Phys; 2005 Aug; 123(5):054516. PubMed ID: 16108678 [TBL] [Abstract][Full Text] [Related]
10. Calorimetric versus kinetic glass transitions in viscous monohydroxy alcohols. Wang LM; Tian Y; Liu R; Richert R J Chem Phys; 2008 Feb; 128(8):084503. PubMed ID: 18315057 [TBL] [Abstract][Full Text] [Related]
11. Diluent effects on the Debye-type dielectric relaxation in viscous monohydroxy alcohols. Wang LM; Shahriari S; Richert R J Phys Chem B; 2005 Dec; 109(49):23255-62. PubMed ID: 16375290 [TBL] [Abstract][Full Text] [Related]
13. Superdipole liquid scenario for the dielectric primary relaxation in supercooled polar liquids. Huang YN; Wang CJ; Riande E J Chem Phys; 2005 Apr; 122(14):144502. PubMed ID: 15847540 [TBL] [Abstract][Full Text] [Related]
14. Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8*OCB). Pawlus S; Mierzwa M; Paluch M; Rzoska SJ; Roland CM J Phys Condens Matter; 2010 Jun; 22(23):235101. PubMed ID: 21393760 [TBL] [Abstract][Full Text] [Related]
15. Gaussian excitations model for glass-former dynamics and thermodynamics. Matyushov DV; Angell CA J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109 [TBL] [Abstract][Full Text] [Related]
16. Pressure effects on the alpha and alpha' relaxations in polymethylphenylsiloxane. Kriegs H; Gapinski J; Meier G; Paluch M; Pawlus S; Patkowski A J Chem Phys; 2006 Mar; 124(10):104901. PubMed ID: 16542098 [TBL] [Abstract][Full Text] [Related]
17. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol. Yardimci H; Leheny RL J Chem Phys; 2006 Jun; 124(21):214503. PubMed ID: 16774419 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of glass-forming liquids. XI. Fluctuating environments by dielectric spectroscopy. Huang W; Richert R J Chem Phys; 2006 Apr; 124(16):164510. PubMed ID: 16674149 [TBL] [Abstract][Full Text] [Related]
19. Non-Gaussian energy landscape of a simple model for strong network-forming liquids: Accurate evaluation of the configurational entropy. Moreno AJ; Saika-Voivod I; Zaccarelli E; La Nave E; Buldyrev SV; Tartaglia P; Sciortino F J Chem Phys; 2006 May; 124(20):204509. PubMed ID: 16774355 [TBL] [Abstract][Full Text] [Related]
20. Molecular motions in amorphous ibuprofen as studied by broadband dielectric spectroscopy. Brás AR; Noronha JP; Antunes AM; Cardoso MM; Schönhals A; Affouard F; Dionísio M; Correia NT J Phys Chem B; 2008 Sep; 112(35):11087-99. PubMed ID: 18686991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]