These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 17824744)

  • 21. Frequency dependent heat capacity within a kinetic model of glassy dynamics.
    Chakrabarti D; Bagchi B
    J Chem Phys; 2005 Jan; 122(1):14501. PubMed ID: 15638668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlating the stretched-exponential and super-Arrhenius behaviors in the structural relaxation of glass-forming liquids.
    Wang L; Li J; Fecht HJ
    J Phys Condens Matter; 2011 Apr; 23(15):155102. PubMed ID: 21436503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dielectric relaxation of long-chain glass-forming monohydroxy alcohols.
    Gao Y; Tu W; Chen Z; Tian Y; Liu R; Wang LM
    J Chem Phys; 2013 Oct; 139(16):164504. PubMed ID: 24182046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dielectric and shear mechanical alpha and beta relaxations in seven glass-forming liquids.
    Jakobsen B; Niss K; Olsen NB
    J Chem Phys; 2005 Dec; 123(23):234511. PubMed ID: 16392935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvation dynamics and electric field relaxation in an imidazolium-PF6 ionic liquid: from room temperature to the glass transition.
    Ito N; Richert R
    J Phys Chem B; 2007 May; 111(18):5016-22. PubMed ID: 17474705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theory of aging in structural glasses.
    Lubchenko V; Wolynes PG
    J Chem Phys; 2004 Aug; 121(7):2852-65. PubMed ID: 15291595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure.
    Kaminska E; Kaminski K; Paluch M; Ngai KL
    J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior.
    Kushima A; Lin X; Li J; Qian X; Eapen J; Mauro JC; Diep P; Yip S
    J Chem Phys; 2009 Oct; 131(16):164505. PubMed ID: 19894954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural relaxation in the hydrogen-bonding liquids N-methylacetamide and water studied by optical Kerr effect spectroscopy.
    Turton DA; Wynne K
    J Chem Phys; 2008 Apr; 128(15):154516. PubMed ID: 18433244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computing the viscosity of supercooled liquids.
    Kushima A; Lin X; Li J; Eapen J; Mauro JC; Qian X; Diep P; Yip S
    J Chem Phys; 2009 Jun; 130(22):224504. PubMed ID: 19530777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diluting the hydrogen bonds in viscous solutions of n-butanol with n-bromobutane: a dielectric study.
    El Goresy T; Böhmer R
    J Chem Phys; 2008 Apr; 128(15):154520. PubMed ID: 18433248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembly and molecular dynamics of oligoindenofluorenes.
    Elmahdy MM; Floudas G; Oldridge L; Grimsdale AC; Müllen K
    Chemphyschem; 2006 Jul; 7(7):1431-41. PubMed ID: 16755638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic interpretation of the scaling of the dynamics of supercooled liquids.
    Casalini R; Mohanty U; Roland CM
    J Chem Phys; 2006 Jul; 125(1):014505. PubMed ID: 16863314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Debye process in Ibuprofen glass-forming liquid: insights from molecular dynamics simulation.
    Affouard F; Correia NT
    J Phys Chem B; 2010 Sep; 114(35):11397-402. PubMed ID: 20707377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fragility of glass-forming polymer liquids.
    Dudowicz J; Freed KF; Douglas JF
    J Phys Chem B; 2005 Nov; 109(45):21350-6. PubMed ID: 16853769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free volume from positron lifetime and pressure-volume-temperature experiments in relation to structural relaxation of van der Waals molecular glass-forming liquids.
    Dlubek G; Shaikh MQ; Rätzke K; Paluch M; Faupel F
    J Phys Condens Matter; 2010 Jun; 22(23):235104. PubMed ID: 21393763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple model of entropy relaxation for explaining effective activation energy behavior below the glass transition temperature.
    Bisquert J; Henn F; Giuntini JC
    J Chem Phys; 2005 Mar; 122(9):094507. PubMed ID: 15836150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: the potential energy landscape ensemble.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224503. PubMed ID: 18081402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of a supercooled ionic liquid studied by optical and dielectric spectroscopy.
    Ito N; Huang W; Richert R
    J Phys Chem B; 2006 Mar; 110(9):4371-7. PubMed ID: 16509737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.