BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 17824823)

  • 1. Long-term intermittent hypoxia increases O2-transport capacity but not VO2max.
    Prommer N; Heinicke K; Viola T; Cajigal J; Behn C; Schmidt WF
    High Alt Med Biol; 2007; 8(3):225-35. PubMed ID: 17824823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term exposure to intermittent hypoxia results in increased hemoglobin mass, reduced plasma volume, and elevated erythropoietin plasma levels in man.
    Heinicke K; Prommer N; Cajigal J; Viola T; Behn C; Schmidt W
    Eur J Appl Physiol; 2003 Feb; 88(6):535-43. PubMed ID: 12560952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological effects of intermittent hypoxia.
    Powell FL; Garcia N
    High Alt Med Biol; 2000; 1(2):125-36. PubMed ID: 11256564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of intermittent exposure to high altitude on blood volume and erythropoietic activity.
    Schmidt W
    High Alt Med Biol; 2002; 3(2):167-76. PubMed ID: 12162861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of intermittent altitude exposure to 4100 m on exercise capacity and blood variables.
    Lundby C; Nielsen TK; Dela F; Damsgaard R
    Scand J Med Sci Sports; 2005 Jun; 15(3):182-7. PubMed ID: 15885040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hematological and physiological adaptations following 46 weeks of moderate altitude residence.
    Brothers MD; Doan BK; Zupan MF; Wile AL; Wilber RL; Byrnes WC
    High Alt Med Biol; 2010; 11(3):199-208. PubMed ID: 20919886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chilean miners commuting from sea level to 4500 m: a prospective study.
    Richalet JP; Donoso MV; Jiménez D; Antezana AM; Hudson C; Cortès G; Osorio J; Leòn A
    High Alt Med Biol; 2002; 3(2):159-66. PubMed ID: 12162860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic intermittent hypoxia at high altitude exposure for over 12 years: assessment of hematological, cardiovascular, and renal effects.
    Brito J; Siqués P; León-Velarde F; De La Cruz JJ; López V; Herruzo R
    High Alt Med Biol; 2007; 8(3):236-44. PubMed ID: 17824824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermittent hypobaric hypoxia induces altitude acclimation and improves the lactate threshold.
    Casas M; Casas H; Pagés T; Rama R; Ricart A; Ventura JL; Ibáñez J; Rodríguez FA; Viscor G
    Aviat Space Environ Med; 2000 Feb; 71(2):125-30. PubMed ID: 10685585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evaluation of the concept of living at moderate altitude and training at sea level.
    Hahn AG; Gore CJ; Martin DT; Ashenden MJ; Roberts AD; Logan PA
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Apr; 128(4):777-89. PubMed ID: 11282321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Living and Training at 825 m for 8 Weeks Supplemented With Intermittent Hypoxic Training at 3,000 m Improves Blood Parameters and Running Performance.
    Wonnabussapawich P; Hamlin MJ; Lizamore CA; Manimmanakorn N; Leelayuwat N; Tunkamnerdthai O; Thuwakum W; Manimmanakorn A
    J Strength Cond Res; 2017 Dec; 31(12):3287-3294. PubMed ID: 29023329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma catecholamines and blood volume in native Andeans during hypoxia and normoxia.
    Gamboa A; Gamboa JL; Holmes C; Sharabi Y; Leon-Velarde F; Fischman GJ; Appenzeller O; Goldstein DS
    Clin Auton Res; 2006 Feb; 16(1):40-5. PubMed ID: 16477494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-altitude exposure of three weeks duration increases lung diffusing capacity in humans.
    Agostoni P; Swenson ER; Bussotti M; Revera M; Meriggi P; Faini A; Lombardi C; Bilo G; Giuliano A; Bonacina D; Modesti PA; Mancia G; Parati G;
    J Appl Physiol (1985); 2011 Jun; 110(6):1564-71. PubMed ID: 21436463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical fitness and hematological changes during acclimatization to moderate altitude: a retrospective study.
    Brothers MD; Wilber RL; Byrnes WC
    High Alt Med Biol; 2007; 8(3):213-24. PubMed ID: 17824822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemoglobin P(50) during a simulated ascent of Mt. Everest, Operation Everest II.
    Wagner PD; Wagner HE; Groves BM; Cymerman A; Houston CS
    High Alt Med Biol; 2007; 8(1):32-42. PubMed ID: 17394415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes.
    Wehrlin JP; Zuest P; Hallén J; Marti B
    J Appl Physiol (1985); 2006 Jun; 100(6):1938-45. PubMed ID: 16497842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistence of the lactate paradox over 8 weeks at 3,800 m.
    Pronk M; Tiemessen I; Hupperets MD; Kennedy BP; Powell FL; Hopkins SR; Wagner PD
    High Alt Med Biol; 2003; 4(4):431-43. PubMed ID: 14672546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes.
    Heinicke K; Heinicke I; Schmidt W; Wolfarth B
    Int J Sports Med; 2005 Jun; 26(5):350-5. PubMed ID: 15895317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustained acclimatization in Chilean mine workers subjected to chronic intermittent hypoxia.
    Farias JG; Osorio J; Soto G; Brito J; Siques P; Reyes JG
    High Alt Med Biol; 2006; 7(4):302-6. PubMed ID: 17173515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training-induced increases in sea level VO2max and endurance are not enhanced by acute hypobaric exposure.
    Emonson DL; Aminuddin AH; Wight RL; Scroop GC; Gore CJ
    Eur J Appl Physiol Occup Physiol; 1997; 76(1):8-12. PubMed ID: 9243164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.