BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 17824823)

  • 21. Effects of erythrocyte infusion on VO2max at high altitude.
    Young AJ; Sawka MN; Muza SR; Boushel R; Lyons T; Rock PB; Freund BJ; Waters R; Cymerman A; Pandolf KB; Valeri CR
    J Appl Physiol (1985); 1996 Jul; 81(1):252-9. PubMed ID: 8828672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of altitude on cycling performance: a challenge to traditional concepts.
    Hahn AG; Gore CJ
    Sports Med; 2001; 31(7):533-57. PubMed ID: 11428690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intermittent hypoxia as a means to improve aerobic capacity in type 2 diabetes.
    Leone RJ; Lalande S
    Med Hypotheses; 2017 Mar; 100():59-63. PubMed ID: 28236850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemoglobin mass and peak oxygen uptake in untrained and trained female altitude residents.
    Böning D; Cristancho E; Serrato M; Reyes O; Mora M; Coy L; Rojas J
    Int J Sports Med; 2004 Nov; 25(8):561-8. PubMed ID: 15531997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. "Living high - training low" vs. "living high - training high": erythropoietic responses and performance of adolescent cross-country skiers.
    Christoulas K; Karamouzis M; Mandroukas K
    J Sports Med Phys Fitness; 2011 Mar; 51(1):74-81. PubMed ID: 21297566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia.
    Rodríguez FA; Ventura JL; Casas M; Casas H; Pagés T; Rama R; Ricart A; Palacios L; Viscor G
    Eur J Appl Physiol; 2000 Jun; 82(3):170-7. PubMed ID: 10929210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure.
    Gore CJ; Clark SA; Saunders PU
    Med Sci Sports Exerc; 2007 Sep; 39(9):1600-9. PubMed ID: 17805094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human red blood cell aging at 5,050-m altitude: a role during adaptation to hypoxia.
    Samaja M; Brenna L; Allibardi S; Cerretelli P
    J Appl Physiol (1985); 1993 Oct; 75(4):1696-701. PubMed ID: 8282622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulated rugby performance at 1550-m altitude following adaptation to intermittent normobaric hypoxia.
    Hamlin MJ; Hinckson EA; Wood MR; Hopkins WG
    J Sci Med Sport; 2008 Nov; 11(6):593-9. PubMed ID: 17719848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term stay at low altitude (1,200 m) promotes better hypoxia adaptation and performance.
    Singh K; Gupta RK; Soree P; Rai L; Himashree G
    Indian J Physiol Pharmacol; 2014; 58(4):376-80. PubMed ID: 26215004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Cardiovascular response to exercise at high altitude in workers chronically exposed to intermittent hypobaric hypoxia].
    Jalil J; Braun S; Chamorro G; Casanegra P; Saldías F; Beroíza T; Foradori A; Rodríguez R; Morales M
    Rev Med Chil; 1994 Oct; 122(10):1120-5. PubMed ID: 7659876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superior exercise performance in lifelong Tibetan residents of 4,400 m compared with Tibetan residents of 3,658 m.
    Curran LS; Zhuang J; Droma T; Moore LG
    Am J Phys Anthropol; 1998 Jan; 105(1):21-31. PubMed ID: 9537925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Altitude training--what is true?].
    Boning D
    Dtsch Z Sportmed; 1996 Mar; 47():196-200. PubMed ID: 11540585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Training high--living low: changes of aerobic performance and muscle structure with training at simulated altitude.
    Geiser J; Vogt M; Billeter R; Zuleger C; Belforti F; Hoppeler H
    Int J Sports Med; 2001 Nov; 22(8):579-85. PubMed ID: 11719893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Military applications of hypoxic training for high-altitude operations.
    Muza SR
    Med Sci Sports Exerc; 2007 Sep; 39(9):1625-31. PubMed ID: 17805096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aerobic capacity of Peruvian Quechua: a test of the developmental adaptation hypothesis.
    Kiyamu M; Rivera-Chira M; Brutsaert TD
    Am J Phys Anthropol; 2015 Mar; 156(3):363-73. PubMed ID: 25385548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aerobic performance at altitude: effects of acclimatization and hematocrit with reference to training.
    Boutellier U; Dériaz O; di Prampero PE; Cerretelli P
    Int J Sports Med; 1990 Feb; 11 Suppl 1():S21-6. PubMed ID: 2323859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lack of acclimatization to chronic hypoxia in humans in the Antarctica.
    Porcelli S; Marzorati M; Healey B; Terraneo L; Vezzoli A; Bella SD; Dicasillati R; Samaja M
    Sci Rep; 2017 Dec; 7(1):18090. PubMed ID: 29273712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ventilatory and cardiovascular responses to hypoxia and exercise in Andean natives living at sea level.
    Gamboa A; León-Velarde F; Rivera-Ch M; Vargas M; Palacios JA; Monge-C C
    High Alt Med Biol; 2001; 2(3):341-7. PubMed ID: 11682013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pre-acclimation to altitude in young adults: choosing a hypoxic pattern at sea level which provokes significant haematological adaptations.
    Tobin B; Costalat G; Renshaw GMC
    Eur J Appl Physiol; 2022 Feb; 122(2):395-407. PubMed ID: 34750724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.