These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
484 related articles for article (PubMed ID: 17824842)
1. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions. Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842 [TBL] [Abstract][Full Text] [Related]
2. Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures. Adamberg K; Lahtvee PJ; Valgepea K; Abner K; Vilu R Antonie Van Leeuwenhoek; 2009 Mar; 95(3):219-26. PubMed ID: 19184516 [TBL] [Abstract][Full Text] [Related]
3. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. Fonseca GG; Gombert AK; Heinzle E; Wittmann C FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of Lactococcus lactis growth and metabolite formation under aerobic and anaerobic conditions in the presence or absence of hemin. Lan CQ; Oddone G; Mills DA; Block DE Biotechnol Bioeng; 2006 Dec; 95(6):1070-80. PubMed ID: 16807924 [TBL] [Abstract][Full Text] [Related]
5. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus. Solem C; Koebmann B; Jensen PR Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381 [TBL] [Abstract][Full Text] [Related]
6. Xylose metabolism in Debaryomyces hansenii UFV-170. Effect of the specific oxygen uptake rate. Sampaio FC; Torre P; Passos FM; Perego P; Passos FJ; Converti A Biotechnol Prog; 2004; 20(6):1641-50. PubMed ID: 15575694 [TBL] [Abstract][Full Text] [Related]
7. [Lactococcus lactis capable of respiring in the presence of heme]. Liang F; Fei L; Guicheng H Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1256-9. PubMed ID: 19062653 [TBL] [Abstract][Full Text] [Related]
8. Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry. Taymaz-Nikerel H; Borujeni AE; Verheijen PJ; Heijnen JJ; van Gulik WM Biotechnol Bioeng; 2010 Oct; 107(2):369-81. PubMed ID: 20506321 [TBL] [Abstract][Full Text] [Related]
9. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Sánchez AM; Bennett GN; San KY Biotechnol Prog; 2005; 21(2):358-65. PubMed ID: 15801771 [TBL] [Abstract][Full Text] [Related]
10. Effects of glucose and nitrogen source concentration on batch fermentation kinetics of Lactococcus lactis under hemin-stimulated respirative condition. Razvi A; Zhang Z; Lan CQ Biotechnol Prog; 2008; 24(4):852-8. PubMed ID: 19194896 [TBL] [Abstract][Full Text] [Related]
11. An elevation of the molar growth yield of Zymomonas mobilis during aerobic exponential growth. Zikmanis P; Krúce R; Auziņa L Arch Microbiol; 1997; 167(2-3):167-71. PubMed ID: 9133324 [TBL] [Abstract][Full Text] [Related]
12. Analysis of hemin effect on lactate reduction in Lactococcus lactis. Nagayasu M; Wardani AK; Nagahisa K; Shimizu H; Shioya S J Biosci Bioeng; 2007 Jun; 103(6):529-34. PubMed ID: 17630124 [TBL] [Abstract][Full Text] [Related]
14. Maintenance and growth requirements in the metabolism of Debaryomyces hansenii performing xylose-to-xylitol bioconversion in corncob hemicellulose hydrolyzate. Rivas B; Torre P; Domínguez JM; Converti A Biotechnol Bioeng; 2009 Mar; 102(4):1062-73. PubMed ID: 18988265 [TBL] [Abstract][Full Text] [Related]
15. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH. Shi W; Li Y; Gao X; Fu R Biotechnol Lett; 2016 Mar; 38(3):495-501. PubMed ID: 26585330 [TBL] [Abstract][Full Text] [Related]
16. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions. Zeng AP; Deckwer WD Biotechnol Prog; 1995; 11(1):71-9. PubMed ID: 7765990 [TBL] [Abstract][Full Text] [Related]
17. Studies on growth and metabolism of Oenococcus oeni on sugars and sugar mixtures. Zhang DS; Lovitt RW J Appl Microbiol; 2005; 99(3):565-72. PubMed ID: 16108798 [TBL] [Abstract][Full Text] [Related]
18. Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions. Papagianni M; Avramidis N Enzyme Microb Technol; 2012 Aug; 51(3):125-30. PubMed ID: 22759530 [TBL] [Abstract][Full Text] [Related]
19. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058 [TBL] [Abstract][Full Text] [Related]
20. Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation. Papagianni M; Avramidis N Enzyme Microb Technol; 2011 Jul; 49(2):197-202. PubMed ID: 22112409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]