These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 178263)

  • 21. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase.
    Bowes C; Li T; Danciger M; Baxter LC; Applebury ML; Farber DB
    Nature; 1990 Oct; 347(6294):677-80. PubMed ID: 1977087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse.
    Frasson M; Sahel JA; Fabre M; Simonutti M; Dreyfus H; Picaud S
    Nat Med; 1999 Oct; 5(10):1183-7. PubMed ID: 10502823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. cGMP accumulation causes photoreceptor degeneration in CNG channel deficiency: evidence of cGMP cytotoxicity independently of enhanced CNG channel function.
    Xu J; Morris L; Thapa A; Ma H; Michalakis S; Biel M; Baehr W; Peshenko IV; Dizhoor AM; Ding XQ
    J Neurosci; 2013 Sep; 33(37):14939-48. PubMed ID: 24027293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Biochemical disorders in hereditary retinal degeneration: changes in cyclic nucleotide phosphodiesterase activity and rhodopsin concentration in the retinas of Campbell rats].
    Ostapenko IA
    Vopr Med Khim; 1981; 27(4):519-23. PubMed ID: 6270908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rod electroretinograms in an elevated cyclic guanosine monophosphate-type human retinal degeneration. Comparison with retinitis pigmentosa.
    Sandberg MA; Miller S; Berson EL
    Invest Ophthalmol Vis Sci; 1990 Nov; 31(11):2283-7. PubMed ID: 1700774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [New aspects inthe study of cyclic nucleotides (studies on the retina)].
    Etingof RN
    Usp Sovrem Biol; 1981; 92(2):198-211. PubMed ID: 6119854
    [No Abstract]   [Full Text] [Related]  

  • 27. Characterization of a phosphodiesterase-immunoreactive polypeptide from rod photoreceptors of developing rd mouse retinas.
    Lee RH; Navon SE; Brown BM; Fung BK; Lolley RN
    Invest Ophthalmol Vis Sci; 1988 Jul; 29(7):1021-7. PubMed ID: 2843477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic expression of cyclic GMP phosphodiesterase activity defines abnormal photoreceptor differentiation in neurological mutants of inherited retinal degeneration.
    Fletcher RT; Sanyal S; Krishna G; Aguirre G; Chader GJ
    J Neurochem; 1986 Apr; 46(4):1240-5. PubMed ID: 3005510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of light on cyclic GMP metabolism in retinal photoreceptors.
    Krishna G; Krishnan N; Fletcher RT; Chader G
    J Neurochem; 1976 Sep; 27(3):717-22. PubMed ID: 9482
    [No Abstract]   [Full Text] [Related]  

  • 30. Analysis of normal and rcdl Irish setter retinal proteins.
    Cunnick J; Takemoto D
    Prog Clin Biol Res; 1989; 314():441-54. PubMed ID: 2558384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracellular mechanism of photoreceptor excitation.
    Cavaggioni A; Caretta A; Melegari M
    Arch Ital Biol; 1982 May; 120(1-3):236-41. PubMed ID: 6291476
    [No Abstract]   [Full Text] [Related]  

  • 32. Altered cyclic nucleotide metabolism and the pathogenesis of hereditary retinal dystrophies.
    Bitensky MW; Rasenick MM; Shinozawa T; Uchida S; Yamazaki A
    Adv Cyclic Nucleotide Res; 1980; 12():227-37. PubMed ID: 6250356
    [No Abstract]   [Full Text] [Related]  

  • 33. Functional and biochemical abnormalities in the retinas of mice heterozygous for the rd gene.
    Voaden MJ; Willmott NJ; Hussain AA; al-Mahdawi S
    Prog Clin Biol Res; 1989; 314():183-9. PubMed ID: 2558382
    [No Abstract]   [Full Text] [Related]  

  • 34. Cyclic nucleotide phosphodiesterases in dystrophic rat retinas: guanosine 3',5' cyclic monophosphate anomalies during photoreceptor cell degeneration.
    Lolley RN; Farber DB
    Exp Eye Res; 1975 Jun; 20(6):585-97. PubMed ID: 168094
    [No Abstract]   [Full Text] [Related]  

  • 35. A review of the role of cyclic GMP in neurological mutants with photoreceptor dysplasia.
    Chader GJ; Fletcher RT; Sanyal S; Aguirre GD
    Curr Eye Res; 1985 Jul; 4(7):811-9. PubMed ID: 2992887
    [No Abstract]   [Full Text] [Related]  

  • 36. Light-induced reduction in cyclic GMP of retinal photoreceptor cells in vivo: abnormalities in the degenerative diseases of RCS rats and rd mice.
    Farber DB; Lolley RN
    J Neurochem; 1977 May; 28(5):1089-95. PubMed ID: 194017
    [No Abstract]   [Full Text] [Related]  

  • 37. Adenoviral-mediated gene transfer to retinal explants during development and degeneration.
    Pang J; Cheng M; Stevenson D; Trousdale MD; Dorey CK; Blanks JC
    Exp Eye Res; 2004 Aug; 79(2):189-201. PubMed ID: 15325566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina.
    Delyfer MN; Forster V; Neveux N; Picaud S; LĂ©veillard T; Sahel JA
    Mol Vis; 2005 Sep; 11():688-96. PubMed ID: 16163266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Participation of 3',5'-AMP in the primary mechanisms of exteroreceptive processes].
    Etingof RN; Dumler IL
    Zh Evol Biokhim Fiziol; 1975; 11(1):3-10. PubMed ID: 168703
    [No Abstract]   [Full Text] [Related]  

  • 40. Light-regulated enzymes of vertebrate retinal rods.
    Pober JS; Bitensky MW
    Adv Cyclic Nucleotide Res; 1979; 11():265-301. PubMed ID: 227247
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.