These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17826787)

  • 41. Frontal analysis in microchip CE: a simple and accurate method for determination of protein-DNA dissociation constant.
    Gong M; Wehmeyer KR; Limbach PA; Heineman WR
    Electrophoresis; 2007 Mar; 28(5):837-42. PubMed ID: 17315151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study of injection bias in a simple hydrodynamic injection in microchip CE.
    Gong M; Wehmeyer KR; Stalcup AM; Limbach PA; Heineman WR
    Electrophoresis; 2007 May; 28(10):1564-71. PubMed ID: 17447241
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiple effect of surfactants used as additives in background electrolytes in capillary zone electrophoresis: cetyltrimethylammonium bromide as example of model surfactant.
    Beckers JL; Bocek P
    Electrophoresis; 2002 Jun; 23(12):1947-52. PubMed ID: 12116141
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sample Preconcentration Protocols in Microfluidic Electrophoresis.
    Kitagawa F; Otsuka K
    Methods Mol Biol; 2019; 1906():65-78. PubMed ID: 30488385
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pneumatic microvalve-based hydrodynamic sample injection for high-throughput, quantitative zone electrophoresis in capillaries.
    Kelly RT; Wang C; Rausch SJ; Lee CS; Tang K
    Anal Chem; 2014 Jul; 86(13):6723-9. PubMed ID: 24865952
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of the aggregation threshold of non-UV-absorbing, neutral or charged surfactants by frontal- and vacancy-frontal analysis continuous capillary electrophoresis.
    Le Saux T; Varenne A; Gareil P
    J Chromatogr A; 2004 Jul; 1041(1-2):219-26. PubMed ID: 15281272
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Label-free fluorescence detection in capillary and microchip electrophoresis.
    Schulze P; Belder D
    Anal Bioanal Chem; 2009 Jan; 393(2):515-25. PubMed ID: 18982318
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Equilibrium analysis of reactions between aromatic anions and nonionic surfactant micelles by capillary zone electrophoresis.
    Takayanagi T; Motomizu S
    J Chromatogr A; 1999 Aug; 853(1-2):55-61. PubMed ID: 10486712
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determination of enantiomers by FESI-sweeping with an acid-labile sweeper in nonaqueous capillary electrophoresis.
    Wang WF; Zhang HG; Qi SD; Chen HL; Chen XG
    Analyst; 2015 Jun; 140(12):4253-9. PubMed ID: 25923176
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A hydrophobic ionic liquid compartmentalized sampling/labeling and its separation techniques in polydimethylsiloxane microchip capillary electrophoresis.
    Quan HH; Li M; Huang Y; Hahn JH
    Electrophoresis; 2017 Jan; 38(2):372-379. PubMed ID: 27739089
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determination of surfactants by capillary electrophoresis.
    Heinig K; Vogt C
    Electrophoresis; 1999 Oct; 20(15-16):3311-28. PubMed ID: 10596832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of Interactions between Phosphatidylcholine Biomembranes and Surfactants.
    Duša F; Chen W; Witos J; Wiedmer SK
    Langmuir; 2018 May; 34(20):5889-5900. PubMed ID: 29715032
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simultaneous determination of amphoteric surfactants in detergents by capillary electrophoresis with indirect UV detection.
    Koike R; Kitagawa F; Otsuka K
    J Chromatogr A; 2007 Jan; 1139(1):136-42. PubMed ID: 17118377
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In-line extraction employing functionalized magnetic particles for capillary and microchip electrophoresis.
    Tennico YH; Remcho VT
    Electrophoresis; 2010 Aug; 31(15):2548-57. PubMed ID: 20665915
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On-line preconcentration of fluorescent derivatives of catecholamines in cerebrospinal fluid using flow-gated capillary electrophoresis.
    Zhang Q; Gong M
    J Chromatogr A; 2016 Jun; 1450():112-20. PubMed ID: 27156734
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effects of alkyl sulfates on the analysis of phenolic compounds by microchip capillary electrophoresis with pulsed amperometric detection.
    Ding Y; Mora MF; Merrill GN; Garcia CD
    Analyst; 2007 Oct; 132(10):997-1004. PubMed ID: 17893803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sweeping and new on-line sample preconcentration techniques in capillary electrophoresis.
    Aranas AT; Guidote AM; Quirino JP
    Anal Bioanal Chem; 2009 May; 394(1):175-85. PubMed ID: 19255749
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Qualitative and quantitative analysis of new alkyl amide arginine surfactants by high-performance liquid chromatography and capillary electrophoresis.
    Piera E; Domínguez C; Clapés P; Erra P; Infante MR
    J Chromatogr A; 1999 Aug; 852(2):499-506. PubMed ID: 10481987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Semi-permanent surfactant coatings for inorganic anion analysis in capillary electrophoresis.
    Baryla NE; Lucy CA
    J Chromatogr A; 2002 May; 956(1-2):271-7. PubMed ID: 12108661
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-sensitivity analyses of metabolites in biological samples by capillary electrophoresis using dynamic pH junction-sweeping.
    Britz-McKibbin P; Terabe S
    Chem Rec; 2002; 2(6):397-404. PubMed ID: 12469351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.