BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 17826988)

  • 1. Utilization of acorn fringe for ellagic acid production by Aspergillus oryzae and Endomyces fibuliger.
    Huang W; Li Z; Niu H; Li L; Lin W; Yang J
    Bioresour Technol; 2008 Jun; 99(9):3552-8. PubMed ID: 17826988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of ellagic acid production from ellagitannins by co-culture and correlation between its yield and activities of relevant enzymes.
    Huang W; Niu H; Li Z; He Y; Gong W; Gong G
    Bioresour Technol; 2008 Mar; 99(4):769-75. PubMed ID: 17363241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual and combined effects of physicochemical parameters on ellagitannin acyl hydrolase and ellagic acid production from ellagitannin by Aspergillus oryzae.
    Huang W; Niu H; Gong GH; Lu YR; Li ZS; Li H
    Bioprocess Biosyst Eng; 2007 Jul; 30(4):281-8. PubMed ID: 17450459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ellagic acid from acorn fringe by enzymatic hydrolysis and combined effects of operational variables and enzymes on yield of the production.
    Huang W; Niu H; Li Z; Li L; Wang W
    Bioresour Technol; 2008 Apr; 99(6):1518-25. PubMed ID: 17544268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of urolithin a as a metabolite produced by human colon microflora from ellagic acid and related compounds.
    Cerdá B; Periago P; Espín JC; Tomás-Barberán FA
    J Agric Food Chem; 2005 Jul; 53(14):5571-6. PubMed ID: 15998116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of tannase and gallic acid from tannin rich substrates by Rhizopus oryzae and Aspergillus foetidus.
    Mukherjee G; Banerjee R
    J Basic Microbiol; 2004; 44(1):42-8. PubMed ID: 14768027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial production of ellagic acid and biodegradation of ellagitannins.
    Aguilera-Carbo A; Augur C; Prado-Barragan LA; Favela-Torres E; Aguilar CN
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):189-99. PubMed ID: 18157721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation.
    Lin H; Cheng W; Ding HT; Chen XJ; Zhou QF; Zhao YH
    Bioresour Technol; 2010 Oct; 101(19):7556-62. PubMed ID: 20444596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ellagic acid: characterization as substrate of polyphenol oxidase.
    Muñoz-Muñoz JL; Garcia-Molina F; Garcia-Molina M; Tudela J; García-Cánovas F; Rodriguez-Lopez JN
    IUBMB Life; 2009 Feb; 61(2):171-7. PubMed ID: 18925653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The complete biodegradation pathway of ellagitannins by Aspergillus niger in solid-state fermentation.
    Ascacio-Valdés JA; Aguilera-Carbó AF; Buenrostro JJ; Prado-Barragán A; Rodríguez-Herrera R; Aguilar CN
    J Basic Microbiol; 2016 Apr; 56(4):329-36. PubMed ID: 26915983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiological transformation of L-tyrosine to 3,4-dihydroxyphenyl L-alanine (L-dopa) by a mutant strain of Aspergillus oryzae UV-7.
    Ikram-Ul-Haq ; Ali S
    Curr Microbiol; 2002 Aug; 45(2):88-93. PubMed ID: 12070684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double mutant of Aspergillus oryzae for improved production of L-dopa (3,4-dihydroxyphenyl-L-alanine) from L-tyrosine.
    Ali S; Haq IU; Qadeer MA; Rajoka MI
    Biotechnol Appl Biochem; 2005 Oct; 42(Pt 2):143-9. PubMed ID: 15727563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production and characterization of a milk-clotting enzyme from Aspergillus oryzae MTCC 5341.
    Vishwanatha KS; Appu Rao AG; Singh SA
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1849-59. PubMed ID: 19727708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Degradation of Gallotannins Catalyzed by Tannase Produced by Aspergillus niger GH1 for Ellagic Acid Production in Submerged and Solid-State Fermentation.
    Chávez-González ML; Guyot S; Rodríguez-Herrera R; Prado-Barragán A; Aguilar CN
    Appl Biochem Biotechnol; 2018 Jun; 185(2):476-483. PubMed ID: 29181764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha-galactosidase production by Aspergillus oryzae in solid-state fermentation.
    Shankar SK; Mulimani VH
    Bioresour Technol; 2007 Mar; 98(4):958-61. PubMed ID: 16713256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of alpha-amylase by Aspergillus oryzae in solid-state fermentation.
    Francis F; Sabu A; Nampoothiri KM; Szakacs G; Pandey A
    J Basic Microbiol; 2002; 42(5):320-6. PubMed ID: 12362403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial transformation of tannin-rich substrate to gallic acid through co-culture method.
    Banerjee R; Mukherjee G; Patra KC
    Bioresour Technol; 2005 May; 96(8):949-53. PubMed ID: 15627566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. l-leucine aminopeptidase production by filamentous Aspergillus fungi.
    Nampoothiri KM; Nagy V; Kovacs K; Szakacs G; Pandey A
    Lett Appl Microbiol; 2005; 41(6):498-504. PubMed ID: 16305677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative profiles of alpha-amylase production in conventional tray reactor and GROWTEK bioreactor.
    Bhanja T; Rout S; Banerjee R; Bhattacharyya BC
    Bioprocess Biosyst Eng; 2007 Sep; 30(5):369-76. PubMed ID: 17573554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniform culture in solid-state fermentation with fungi and its efficient enzyme production.
    Ito K; Kawase T; Sammoto H; Gomi K; Kariyama M; Miyake T
    J Biosci Bioeng; 2011 Mar; 111(3):300-5. PubMed ID: 21163699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.