These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17827078)

  • 21. Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4.
    Yeon KC; Wang J; Ng SC
    Biomaterials; 2001 Oct; 22(20):2705-12. PubMed ID: 11545304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of strontium on the synthesis and surface properties of biphasic calcium phosphate (BCP) bioceramics.
    Kanchana P; Sekar C
    J Appl Biomater Biomech; 2010; 8(3):153-8. PubMed ID: 21337306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel highly biodegradable biphasic tricalcium phosphates composed of alpha-tricalcium phosphate and beta-tricalcium phosphate.
    Li Y; Weng W; Tam KC
    Acta Biomater; 2007 Mar; 3(2):251-4. PubMed ID: 16979393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining particle size distribution and isothermal calorimetry data to determine the reaction kinetics of alpha-tricalcium phosphate-water mixtures.
    Bohner M; Malsy AK; Camiré CL; Gbureck U
    Acta Biomater; 2006 May; 2(3):343-8. PubMed ID: 16701893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanochemical synthesis of zinc-apatitic calcium phosphate and the controlled zinc release for bone tissue engineering.
    Hattori Y; Mori H; Chou J; Otsuka M
    Drug Dev Ind Pharm; 2016; 42(4):595-601. PubMed ID: 26165245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of a biomimetic bone cement: role of DCPD.
    Panzavolta S; Bracci B; Rubini K; Bigi A
    J Inorg Biochem; 2011 Aug; 105(8):1060-5. PubMed ID: 21726768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation.
    Alge DL; Santa Cruz G; Goebel WS; Chu TM
    Biomed Mater; 2009 Apr; 4(2):025016. PubMed ID: 19349655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A water setting tetracalcium phosphate-dicalcium phosphate dihydrate cement.
    Burguera EF; Guitián F; Chow LC
    J Biomed Mater Res A; 2004 Nov; 71(2):275-82. PubMed ID: 15386489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility.
    Kim HW; Georgiou G; Knowles JC; Koh YH; Kim HE
    Biomaterials; 2004 Aug; 25(18):4203-13. PubMed ID: 15046910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of ball milling on the processing of bone substitutes with calcium phosphate powders.
    Bignon A; Chevalier J; Fantozzi G
    J Biomed Mater Res; 2002; 63(5):619-26. PubMed ID: 12209909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of biomedical organic compounds on the setting reaction of calcium phosphates.
    Yu T; Ye J; Gao C; Yu L; Wang Y
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):363-9. PubMed ID: 19811895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration.
    Liu H; Yazici H; Ergun C; Webster TJ; Bermek H
    Acta Biomater; 2008 Sep; 4(5):1472-9. PubMed ID: 18394980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium-strontium mixed phosphate as novel injectable and radio-opaque hydraulic cement.
    Romieu G; Garric X; Munier S; Vert M; Boudeville P
    Acta Biomater; 2010 Aug; 6(8):3208-15. PubMed ID: 20144746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of calcium disilicide-induced calcification of crystalline silicon surfaces in simulated body fluid under zero bias.
    Seregin VV; Coffer JL
    J Biomed Mater Res A; 2008 Oct; 87(1):15-24. PubMed ID: 18080303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solubility of dicalcium phosphate dihydrate by solid titration.
    Pan HB; Darvell BW
    Caries Res; 2009; 43(4):254-60. PubMed ID: 19439946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chloride- and alkali-containing calcium phosphates as basic materials to prepare calcium phosphate cements.
    Bermúdez O; Boltong MG; Driessens FC; Ginebra MP; Fernández E; Planell JA
    Biomaterials; 1994 Oct; 15(12):1019-23. PubMed ID: 7841290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of ball milling grinding pathways on the bulk and reactivity properties of calcium phosphate cements.
    Lopez-Heredia MA; Bohner M; Zhou W; Winnubst AJ; Wolke JG; Jansen JA
    J Biomed Mater Res B Appl Biomater; 2011 Jul; 98(1):68-79. PubMed ID: 21504056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical characterization of dibasic calcium phosphate dihydrate and anhydrate.
    Miyazaki T; Sivaprakasam K; Tantry J; Suryanarayanan R
    J Pharm Sci; 2009 Mar; 98(3):905-16. PubMed ID: 18563795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zinc effect on the in vitro formation of calcium phosphates: relevance to clinical inhibition of calculus formation.
    LeGeros RZ; Bleiwas CB; Retino M; Rohanizadeh R; LeGeros JP
    Am J Dent; 1999 Apr; 12(2):65-71. PubMed ID: 10477985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental development of a chitosan-bonded beta-tricalcium phosphate bone filling paste.
    Ito M; Miyazaki A; Yamagishi T; Yagasaki H; Hashem A; Oshida Y
    Biomed Mater Eng; 1994; 4(6):439-49. PubMed ID: 7833787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.