BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17827129)

  • 1. Towards a comprehensive model for the electronic and vibrational structure of the Creutz-Taube ion.
    Reimers JR; Wallace BB; Hush NS
    Philos Trans A Math Phys Eng Sci; 2008 Jan; 366(1862):15-31. PubMed ID: 17827129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization or delocalization in the electronic structure of Creutz-Taube-type complexes in aqueous solution.
    Yokogawa D; Sato H; Nakao Y; Sakaki S
    Inorg Chem; 2007 Mar; 46(6):1966-74. PubMed ID: 17298050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the localized-to-delocalized transition.
    Concepcion JJ; Dattelbaum DM; Meyer TJ; Rocha RC
    Philos Trans A Math Phys Eng Sci; 2008 Jan; 366(1862):163-75. PubMed ID: 17851152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Creutz-Taube complex revisited: DFT study of the infrared frequencies.
    Todorova T; Delley B
    Inorg Chem; 2008 Dec; 47(23):11269-77. PubMed ID: 18980374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational Coherences of the Photoinduced Mixed-Valent Creutz-Taube Ion Revealed by Excited State Dynamics.
    Šrut A; Krewald V
    J Phys Chem A; 2023 Nov; 127(47):9911-9920. PubMed ID: 37883652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Excited-State Creutz-Taube Ion.
    Pieslinger GE; Ramírez-Wierzbicki I; Cadranel A
    Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202211747. PubMed ID: 36161441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excited State Mixed-Valence Complexes: From the Special Pair to the Creutz-Taube Ion and Beyond.
    Low PJ
    Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202217082. PubMed ID: 36691301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical determination of the excited states and of g-factors of the Creutz-Taube ion, [(NH3)5-Ru-pyrazine-Ru-(NH3)5]5+.
    Bolvin H
    Inorg Chem; 2007 Jan; 46(2):417-27. PubMed ID: 17279820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed valence Creutz-Taube ion analogues incorporating thiacrowns: synthesis, structure, physical properties, and computational studies.
    Adams H; Costa PJ; Newell M; Vickers SJ; Ward MD; Félix V; Thomas JA
    Inorg Chem; 2008 Dec; 47(24):11633-43. PubMed ID: 19012395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of charge carriers with lattice vibrations in oligoacene crystals from naphthalene to pentacene.
    Sánchez-Carrera RS; Paramonov P; Day GM; Coropceanu V; Brédas JL
    J Am Chem Soc; 2010 Oct; 132(41):14437-46. PubMed ID: 20866074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Theoretical Assessment of Spin and Charge States in Binuclear Cobalt-Ruthenium Complexes: Implications for a Creutz-Taube Model Ion Separated by a C
    da Silva AR; de Almeida JS; Rivelino R
    J Phys Chem A; 2020 Dec; 124(51):10826-10837. PubMed ID: 33296201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of mixed-valence chemistry: inventing new analogues of the Creutz-Taube ion.
    Kaim W; Klein A; Glöckle M
    Acc Chem Res; 2000 Nov; 33(11):755-63. PubMed ID: 11087312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetric Electron Transfer Coordinates are Intrinsic to Bridged Systems: An ab Initio Treatment of the Creutz-Taube Ion.
    Šrut A; Lear BJ; Krewald V
    Angew Chem Int Ed Engl; 2024 Jul; ():e202404727. PubMed ID: 38949626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective binding, self-assembly and nanopatterning of the Creutz-Taube ion on surfaces.
    Wang Y; Lieberman M; Hang Q; Bernstein G
    Int J Mol Sci; 2009 Feb; 10(2):533-558. PubMed ID: 19333420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum entanglement between electronic and vibrational degrees of freedom in molecules.
    McKemmish LK; McKenzie RH; Hush NS; Reimers JR
    J Chem Phys; 2011 Dec; 135(24):244110. PubMed ID: 22225147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal transmission through molecular quantum-dot cellular automata: a theoretical study on Creutz-Taube complexes for molecular computing.
    Tokunaga K
    Phys Chem Chem Phys; 2009 Mar; 11(10):1474-83. PubMed ID: 19240923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational vibrational spectroscopy of peptides and proteins in one and two dimensions.
    Jeon J; Yang S; Choi JH; Cho M
    Acc Chem Res; 2009 Sep; 42(9):1280-9. PubMed ID: 19456096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational coherence in polar solutions of Zn(II) tetrakis(N-methylpyridyl)porphyrin with Soret-band excitation: rapidly damped intermolecular modes with clustered solvent molecules and slowly damped intramolecular modes from the porphyrin macrocycle.
    Dillman KL; Shelly KR; Beck WF
    J Phys Chem B; 2009 Apr; 113(17):6127-39. PubMed ID: 19348449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excited-state vibrational coherence in methanol solution of Zn(II) tetrakis(N-methylpyridyl)porphyrin: charge-dependent intermolecular mode frequencies and implications for electron-transfer dynamics in photosynthetic reaction centers.
    Dillman KL; Beck WF
    J Phys Chem B; 2010 Nov; 114(46):15269-77. PubMed ID: 20973554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.