These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17827218)

  • 21. A water-explicit lattice model of heat-, cold-, and pressure-induced protein unfolding.
    Patel BA; Debenedetti PG; Stillinger FH; Rossky PJ
    Biophys J; 2007 Dec; 93(12):4116-27. PubMed ID: 17766342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inverse temperature transition of a biomimetic elastin model: reactive flux analysis of folding/unfolding and its coupling to solvent dielectric relaxation.
    Baer M; Schreiner E; Kohlmeyer A; Rousseau R; Marx D
    J Phys Chem B; 2006 Mar; 110(8):3576-87. PubMed ID: 16494413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational changes of trialanine induced by direct interactions between alanine residues and alcohols in binary mixtures of water with glycerol and ethanol.
    Toal S; Amidi O; Schweitzer-Stenner R
    J Am Chem Soc; 2011 Aug; 133(32):12728-39. PubMed ID: 21728315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water mediation in protein folding and molecular recognition.
    Levy Y; Onuchic JN
    Annu Rev Biophys Biomol Struct; 2006; 35():389-415. PubMed ID: 16689642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of glycerol-water binary mixtures on the structure and dynamics of protein solutions.
    Ghattyvenkatakrishna PK; Carri GA
    J Biomol Struct Dyn; 2014; 32(3):424-37. PubMed ID: 23581791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inertial suppression of protein dynamics in a binary glycerol-trehalose glass.
    Curtis JE; Dirama TE; Carri GA; Tobias DJ
    J Phys Chem B; 2006 Nov; 110(46):22953-6. PubMed ID: 17107124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conformational dependence of hemoglobin reactivity under high viscosity conditions: the role of solvent slaved dynamics.
    Samuni U; Roche CJ; Dantsker D; Friedman JM
    J Am Chem Soc; 2007 Oct; 129(42):12756-64. PubMed ID: 17910446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Translational-entropy gain of solvent upon protein folding.
    Harano Y; Kinoshita M
    Biophys J; 2005 Oct; 89(4):2701-10. PubMed ID: 16055541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 2H NMR studies of glycerol dynamics in protein matrices.
    Herbers CR; Sauer D; Vogel M
    J Chem Phys; 2012 Mar; 136(12):124511. PubMed ID: 22462878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Grand canonical Monte Carlo simulations of water in protein environments.
    Woo HJ; Dinner AR; Roux B
    J Chem Phys; 2004 Oct; 121(13):6392-400. PubMed ID: 15446937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solvent-induced micelle formation in a hydrophobic interaction model.
    Moelbert S; Normand B; De Los Rios P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061924. PubMed ID: 15244634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence of coexistence of change of caged dynamics at T(g) and the dynamic transition at T(d) in solvated proteins.
    Capaccioli S; Ngai KL; Ancherbak S; Paciaroni A
    J Phys Chem B; 2012 Feb; 116(6):1745-57. PubMed ID: 22239251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydration effect on low-frequency protein dynamics observed in simulated neutron scattering spectra.
    Joti Y; Nakagawa H; Kataoka M; Kitao A
    Biophys J; 2008 Jun; 94(11):4435-43. PubMed ID: 18310244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preferential hydration of lysozyme in water/glycerol mixtures: a small-angle neutron scattering study.
    Sinibaldi R; Ortore MG; Spinozzi F; Carsughi F; Frielinghaus H; Cinelli S; Onori G; Mariani P
    J Chem Phys; 2007 Jun; 126(23):235101. PubMed ID: 17600444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulations of the aqueous interface with the [BMI][PF6] ionic liquid: Comparison of different solvent models.
    Chevrot G; Schurhammer R; Wipff G
    Phys Chem Chem Phys; 2006 Sep; 8(36):4166-74. PubMed ID: 16971984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical reaction dynamics within anisotropic solvents in time-dependent fields.
    Hershkovits E; Hernandez R
    J Chem Phys; 2005 Jan; 122(1):14509. PubMed ID: 15638676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the low-temperature properties of a simplified protein model.
    Hagmann JG; Nakagawa N; Peyrard M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012705. PubMed ID: 24580255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of vicinal polar and charged groups on hydrophobic hydration.
    Cheng YK; Rossky PJ
    Biopolymers; 1999 Dec; 50(7):742-50. PubMed ID: 10547529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solvent mobility and the protein 'glass' transition.
    Vitkup D; Ringe D; Petsko GA; Karplus M
    Nat Struct Biol; 2000 Jan; 7(1):34-8. PubMed ID: 10625424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relaxation kinetics and the glassiness of native proteins: coupling of timescales.
    Baysal C; Atilgan AR
    Biophys J; 2005 Mar; 88(3):1570-6. PubMed ID: 15596500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.