These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17827262)

  • 1. Flow patterns in three-dimensional porcine epicardial coronary arterial tree.
    Huo Y; Wischgoll T; Kassab GS
    Am J Physiol Heart Circ Physiol; 2007 Nov; 293(5):H2959-70. PubMed ID: 17827262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flow field along the entire length of mouse aorta and primary branches.
    Huo Y; Guo X; Kassab GS
    Ann Biomed Eng; 2008 May; 36(5):685-99. PubMed ID: 18299987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of vessel compliance on flow pattern in porcine epicardial right coronary arterial tree.
    Huo Y; Choy JS; Svendsen M; Sinha AK; Kassab GS
    J Biomech; 2009 Mar; 42(5):594-602. PubMed ID: 19195659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wall shear stress in normal left coronary artery tree.
    Soulis JV; Farmakis TM; Giannoglou GD; Louridas GE
    J Biomech; 2006; 39(4):742-9. PubMed ID: 16439244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Which diameter and angle rule provides optimal flow patterns in a coronary bifurcation?
    Huo Y; Finet G; Lefevre T; Louvard Y; Moussa I; Kassab GS
    J Biomech; 2012 Apr; 45(7):1273-9. PubMed ID: 22365499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow.
    Glor FP; Long Q; Hughes AD; Augst AD; Ariff B; Thom SA; Verdonck PR; Xu XY
    Ann Biomed Eng; 2003 Feb; 31(2):142-51. PubMed ID: 12627821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wall shear stress gradient topography in the normal left coronary arterial tree: possible implications for atherogenesis.
    Farmakis TM; Soulis JV; Giannoglou GD; Zioupos GJ; Louridas GE
    Curr Med Res Opin; 2004 May; 20(5):587-96. PubMed ID: 15140324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery.
    Soulis JV; Giannoglou GD; Chatzizisis YS; Seralidou KV; Parcharidis GE; Louridas GE
    Med Eng Phys; 2008 Jan; 30(1):9-19. PubMed ID: 17412633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of main branch stenting on endothelial shear stress: role of side branch diameter, angle and lesion.
    Chen HY; Moussa ID; Davidson C; Kassab GS
    J R Soc Interface; 2012 Jun; 9(71):1187-93. PubMed ID: 22112654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.
    Freshwater IJ; Morsi YS; Lai T
    Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wall shear stress oscillation and its gradient in the normal left coronary artery tree bifurcations.
    Soulis J; Fytanidis D; Seralidou K; Giannoglou G
    Hippokratia; 2014 Jan; 18(1):12-6. PubMed ID: 25125945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Link between deviations from Murray's Law and occurrence of low wall shear stress regions in the left coronary artery.
    Doutel E; Pinto SI; Campos JB; Miranda JM
    J Theor Biol; 2016 Aug; 402():89-99. PubMed ID: 27157126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wall pressure gradient in normal left coronary artery tree.
    Giannoglou GD; Soulis JV; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE
    Med Eng Phys; 2005 Jul; 27(6):455-64. PubMed ID: 15990062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation of blood flow in three-dimensional porcine left anterior descending artery with various stenoses.
    Su B; Huo Y; Kassab GS; Kabinejadian F; Kim S; Leo HL; Zhong L
    Comput Biol Med; 2014 Apr; 47():130-8. PubMed ID: 24607680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study on the pulsatile flow characteristics of proximal anastomotic models.
    Chua LP; Zhang JM; Yu SC; Ghista DN; Tan YS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):361-79. PubMed ID: 16225153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of graft-host diameter ratio on the hemodynamics of CABG.
    Qiao A; Liu Y
    Biomed Mater Eng; 2006; 16(3):189-201. PubMed ID: 16518018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cardiac motion on right coronary artery hemodynamics.
    Zeng D; Ding Z; Friedman MH; Ethier CR
    Ann Biomed Eng; 2003 Apr; 31(4):420-9. PubMed ID: 12723683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow parameters in normal left coronary artery tree. Implication to atherogenesis.
    Soulis JV; Giannoglou GD; Parcharidis GE; Louridas GE
    Comput Biol Med; 2007 May; 37(5):628-36. PubMed ID: 16920094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow patterns and wall shear stress distribution in human internal carotid arteries: the geometric effect on the risk for stenoses.
    Zhang C; Xie S; Li S; Pu F; Deng X; Fan Y; Li D
    J Biomech; 2012 Jan; 45(1):83-9. PubMed ID: 22079384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.