BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 17827266)

  • 21. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals.
    Lee J; Bae H; Jeong J; Lee JY; Yang YY; Hwang I; Martinoia E; Lee Y
    Plant Physiol; 2003 Oct; 133(2):589-96. PubMed ID: 14512517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco.
    Keeran NS; Ganesan G; Parida AK
    Transgenic Res; 2017 Apr; 26(2):247-261. PubMed ID: 27888434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Role of the First Four Transmembrane Helices in ZntA, a P
    Roberts CS; Muralidharan S; Ni F; Mitra B
    Biochemistry; 2020 Dec; 59(47):4488-4498. PubMed ID: 33190490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conserved aspartic acid 714 in transmembrane segment 8 of the ZntA subgroup of P1B-type ATPases is a metal-binding residue.
    Dutta SJ; Liu J; Hou Z; Mitra B
    Biochemistry; 2006 May; 45(18):5923-31. PubMed ID: 16669635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. P(1B)-ATPases--an ancient family of transition metal pumps with diverse functions in plants.
    Williams LE; Mills RF
    Trends Plant Sci; 2005 Oct; 10(10):491-502. PubMed ID: 16154798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The copper supply pathway to a Salmonella Cu,Zn-superoxide dismutase (SodCII) involves P(1B)-type ATPase copper efflux and periplasmic CueP.
    Osman D; Patterson CJ; Bailey K; Fisher K; Robinson NJ; Rigby SE; Cavet JS
    Mol Microbiol; 2013 Feb; 87(3):466-77. PubMed ID: 23171030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional analysis of heavy metal P
    Tian P; Feng YX; Li CZ; Zhang P; Yu XZ
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):287-297. PubMed ID: 35900629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.).
    Lan HX; Wang ZF; Wang QH; Wang MM; Bao YM; Huang J; Zhang HS
    Mol Biol Rep; 2013 Feb; 40(2):1201-10. PubMed ID: 23070916
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional analyses of TaHMA2, a P(1B)-type ATPase in wheat.
    Tan J; Wang J; Chai T; Zhang Y; Feng S; Li Y; Zhao H; Liu H; Chai X
    Plant Biotechnol J; 2013 May; 11(4):420-31. PubMed ID: 23294838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Zinc Resistance Mechanisms of P1B-type ATPases in Sinorhizobium meliloti CCNWSX0020.
    Lu M; Li Z; Liang J; Wei Y; Rensing C; Wei G
    Sci Rep; 2016 Jul; 6():29355. PubMed ID: 27378600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutathione and transition-metal homeostasis in Escherichia coli.
    Helbig K; Bleuel C; Krauss GJ; Nies DH
    J Bacteriol; 2008 Aug; 190(15):5431-8. PubMed ID: 18539744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function.
    Mitra B; Sharma R
    Biochemistry; 2001 Jun; 40(25):7694-9. PubMed ID: 11412123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity.
    Dutta SJ; Liu J; Stemmler AJ; Mitra B
    Biochemistry; 2007 Mar; 46(12):3692-703. PubMed ID: 17326661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Barley HvHMA1 is a heavy metal pump involved in mobilizing organellar Zn and Cu and plays a role in metal loading into grains.
    Mikkelsen MD; Pedas P; Schiller M; Vincze E; Mills RF; Borg S; Møller A; Schjoerring JK; Williams LE; Baekgaard L; Holm PB; Palmgren MG
    PLoS One; 2012; 7(11):e49027. PubMed ID: 23155447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of a heavy metal ATPase from the apicomplexan Cryptosporidium parvum.
    LaGier MJ; Zhu G; Keithly JS
    Gene; 2001 Mar; 266(1-2):25-34. PubMed ID: 11290416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of novel rice (Oryza sativa) HPP and HIPP genes tolerant to heavy metal toxicity.
    Khan IU; Rono JK; Zhang BQ; Liu XS; Wang MQ; Wang LL; Wu XC; Chen X; Cao HW; Yang ZM
    Ecotoxicol Environ Saf; 2019 Jul; 175():8-18. PubMed ID: 30878662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exogenous EDDS modifies copper-induced various toxic responses in rice.
    Tan J; He S; Yan S; Li Y; Li H; Zhang H; Zhao L; Li L
    Protoplasma; 2014 Sep; 251(5):1213-21. PubMed ID: 24595621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice.
    Baxter I; Tchieu J; Sussman MR; Boutry M; Palmgren MG; Gribskov M; Harper JF; Axelsen KB
    Plant Physiol; 2003 Jun; 132(2):618-28. PubMed ID: 12805592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans.
    Legatzki A; Grass G; Anton A; Rensing C; Nies DH
    J Bacteriol; 2003 Aug; 185(15):4354-61. PubMed ID: 12867443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.