These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 17827266)

  • 41. CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a P(IB-2)-type ATPase involved in cadmium and zinc resistance.
    Maynaud G; Brunel B; Yashiro E; Mergeay M; Cleyet-Marel JC; Le Quéré A
    Res Microbiol; 2014 Apr; 165(3):175-89. PubMed ID: 24607711
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase.
    Rensing C; Mitra B; Rosen BP
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14326-31. PubMed ID: 9405611
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression of ZntA, a zinc-transporting P1-type ATPase, is specifically regulated by zinc and cadmium.
    Noll M; Lutsenko S
    IUBMB Life; 2000 Apr; 49(4):297-302. PubMed ID: 10995032
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The metal-binding sites of the zinc-transporting P-type ATPase of Escherichia coli. Lys693 and Asp714 in the seventh and eighth transmembrane segments of ZntA contribute to the coupling of metal binding and ATPase activity.
    Okkeri J; Haltia T
    Biochim Biophys Acta; 2006 Nov; 1757(11):1485-95. PubMed ID: 16890908
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels.
    Mills RF; Francini A; Ferreira da Rocha PS; Baccarini PJ; Aylett M; Krijger GC; Williams LE
    FEBS Lett; 2005 Jan; 579(3):783-91. PubMed ID: 15670847
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae.
    Kim D; Gustin JL; Lahner B; Persans MW; Baek D; Yun DJ; Salt DE
    Plant J; 2004 Jul; 39(2):237-51. PubMed ID: 15225288
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice.
    Takahashi R; Ishimaru Y; Shimo H; Ogo Y; Senoura T; Nishizawa NK; Nakanishi H
    Plant Cell Environ; 2012 Nov; 35(11):1948-57. PubMed ID: 22548273
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Advances in plant heavy metal transporter P1B-ATPases].
    An P; Zhang D; Zhou Z; Han D; Xu Z; Huang W
    Sheng Wu Gong Cheng Xue Bao; 2021 Sep; 37(9):3020-3030. PubMed ID: 34622614
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal-binding characteristics of the amino-terminal domain of ZntA: binding of lead is different compared to cadmium and zinc.
    Liu J; Stemmler AJ; Fatima J; Mitra B
    Biochemistry; 2005 Apr; 44(13):5159-67. PubMed ID: 15794653
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetic analysis of metal binding to the amino-terminal domain of ZntA by monitoring metal-thiolate charge-transfer complexes.
    Dutta SJ; Liu J; Mitra B
    Biochemistry; 2005 Nov; 44(43):14268-74. PubMed ID: 16245943
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli.
    Binet MR; Poole RK
    FEBS Lett; 2000 May; 473(1):67-70. PubMed ID: 10802061
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Diversity of the metal-transporting P1B-type ATPases.
    Smith AT; Smith KP; Rosenzweig AC
    J Biol Inorg Chem; 2014 Aug; 19(6):947-60. PubMed ID: 24729073
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase.
    Beard SJ; Hashim R; Membrillo-Hernández J; Hughes MN; Poole RK
    Mol Microbiol; 1997 Sep; 25(5):883-91. PubMed ID: 9364914
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch.
    Verret F; Gravot A; Auroy P; Preveral S; Forestier C; Vavasseur A; Richaud P
    FEBS Lett; 2005 Feb; 579(6):1515-22. PubMed ID: 15733866
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel Zn2+ coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn(2+)-ATPase HMA2.
    Eren E; González-Guerrero M; Kaufman BM; Argüello JM
    Biochemistry; 2007 Jul; 46(26):7754-64. PubMed ID: 17550234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases.
    Argüello JM
    J Membr Biol; 2003 Sep; 195(2):93-108. PubMed ID: 14692449
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assay of Copper Transfer and Binding to P1B-ATPases.
    Padilla-Benavides T; Argüello JM
    Methods Mol Biol; 2016; 1377():267-77. PubMed ID: 26695039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis.
    Kobae Y; Uemura T; Sato MH; Ohnishi M; Mimura T; Nakagawa T; Maeshima M
    Plant Cell Physiol; 2004 Dec; 45(12):1749-58. PubMed ID: 15653794
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola.
    Li Z; Wu L; Hu P; Luo Y; Christie P
    J Hazard Mater; 2013 Oct; 261():332-41. PubMed ID: 23959253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34.
    Scherer J; Nies DH
    Mol Microbiol; 2009 Aug; 73(4):601-21. PubMed ID: 19602147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.