These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 17827291)

  • 1. trans-Acting factors and cis elements involved in glucose repression of arabinan degradation in Bacillus subtilis.
    Inácio JM; de Sá-Nogueira I
    J Bacteriol; 2007 Nov; 189(22):8371-6. PubMed ID: 17827291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of genes encoding arabinan-degrading enzymes in Bacillus subtilis.
    Raposo MP; Inácio JM; Mota LJ; de Sá-Nogueira I
    J Bacteriol; 2004 Mar; 186(5):1287-96. PubMed ID: 14973026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon.
    Galinier A; Deutscher J; Martin-Verstraete I
    J Mol Biol; 1999 Feb; 286(2):307-14. PubMed ID: 9973552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. trans-acting factors affecting carbon catabolite repression of the hut operon in Bacillus subtilis.
    Zalieckas JM; Wray LV; Fisher SH
    J Bacteriol; 1999 May; 181(9):2883-8. PubMed ID: 10217782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolite repression of dra-nupC-pdp operon expression in Bacillus subtilis.
    Zeng X; Galinier A; Saxild HH
    Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2901-2908. PubMed ID: 11065368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression.
    Darbon E; Servant P; Poncet S; Deutscher J
    Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative interdependence of coeffectors, CcpA and cre in carbon catabolite regulation of Bacillus subtilis.
    Seidel G; Diel M; Fuchsbauer N; Hillen W
    FEBS J; 2005 May; 272(10):2566-77. PubMed ID: 15885105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulated expression of HPrK/P does not affect carbon catabolite repression of the xyn operon and of rocG in Bacillus subtilis.
    Bertram R; Wünsche A; Sprehe M; Hillen W
    FEMS Microbiol Lett; 2006 Jun; 259(1):147-52. PubMed ID: 16684115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catabolite repression of the citST two-component system in Bacillus subtilis.
    Repizo GD; Blancato VS; Sender PD; Lolkema J; Magni C
    FEMS Microbiol Lett; 2006 Jul; 260(2):224-31. PubMed ID: 16842348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of two distinct catabolite-responsive elements in catabolite repression of the Bacillus subtilis myo-inositol (iol) operon.
    Miwa Y; Fujita Y
    J Bacteriol; 2001 Oct; 183(20):5877-84. PubMed ID: 11566986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK.
    Lorca GL; Chung YJ; Barabote RD; Weyler W; Schilling CH; Saier MH
    J Bacteriol; 2005 Nov; 187(22):7826-39. PubMed ID: 16267306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon catabolite repression in Bacillus subtilis: quantitative analysis of repression exerted by different carbon sources.
    Singh KD; Schmalisch MH; Stülke J; Görke B
    J Bacteriol; 2008 Nov; 190(21):7275-84. PubMed ID: 18757537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of glucose-repression-resistant mutants of Bacillus subtilis: identification of the glcR gene.
    Stülke J; Martin-Verstraete I; Glaser P; Rapoport G
    Arch Microbiol; 2001 Jun; 175(6):441-9. PubMed ID: 11491085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V; Boël G; Deutscher J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):433-8. PubMed ID: 11361075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis.
    Presecan-Siedel E; Galinier A; Longin R; Deutscher J; Danchin A; Glaser P; Martin-Verstraete I
    J Bacteriol; 1999 Nov; 181(22):6889-97. PubMed ID: 10559153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
    Miwa Y; Nagura K; Eguchi S; Fukuda H; Deutscher J; Fujita Y
    Mol Microbiol; 1997 Mar; 23(6):1203-13. PubMed ID: 9106211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Stülke J; Klier A; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoprotein Crh-Ser46-P displays altered binding to CcpA to effect carbon catabolite regulation.
    Schumacher MA; Seidel G; Hillen W; Brennan RG
    J Biol Chem; 2006 Mar; 281(10):6793-800. PubMed ID: 16316990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6).
    Puri-Taneja A; Paul S; Chen Y; Hulett FM
    J Bacteriol; 2006 Feb; 188(4):1266-78. PubMed ID: 16452408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of the Bacillus subtilis acsA gene: position and sequence context affect cre-mediated carbon catabolite repression.
    Zalieckas JM; Wray LV; Fisher SH
    J Bacteriol; 1998 Dec; 180(24):6649-54. PubMed ID: 9852010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.