BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 17827304)

  • 21. Recycle use of Sphingomonas sp. CDH-7 cells for continuous degradation of carbazole in the presence of MgCl2.
    Nakagawa H; Kirimura K; Nitta T; Kino K; Kurane R; Usami S
    Curr Microbiol; 2002 Apr; 44(4):251-6. PubMed ID: 11910494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Sphingomonas plasmid pCAR3 is involved in complete mineralization of carbazole.
    Shintani M; Urata M; Inoue K; Eto K; Habe H; Omori T; Yamane H; Nojiri H
    J Bacteriol; 2007 Mar; 189(5):2007-20. PubMed ID: 17172338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclodextrin-linked alginate beads as supporting materials for Sphingomonas cloacae, a nonylphenol degrading bacteria.
    Pluemsab W; Fukazawa Y; Furuike T; Nodasaka Y; Sakairi N
    Bioresour Technol; 2007 Aug; 98(11):2076-81. PubMed ID: 17055261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kappa-carrageenan/gelatin gel beads for the co-immobilization of aerobic and anaerobic microbial communities degrading 2,4,6-trichlorophenol under air-limited conditions.
    Gardin H; Pauss A
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):517-23. PubMed ID: 11549031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of di-n-methyl phthalate biodegradation by free and immobilized microbial cells.
    Wang JL; Ye YC; Wu WZ
    Biomed Environ Sci; 2003 Jun; 16(2):126-32. PubMed ID: 12964785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two contrary roles of Fe
    Zamani H; Rakhshaee R; Garakoui SR
    J Hazard Mater; 2018 Feb; 344():566-575. PubMed ID: 29102639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective and continuous degradation of carbazole contained in petroleum oil by resting cells of Sphingomonas sp. CDH-7.
    Kirimura K; Nakagawa H; Tsuji K; Matsuda K; Kurane R; Usami S
    Biosci Biotechnol Biochem; 1999 Sep; 63(9):1563-8. PubMed ID: 10540744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii.
    Zhou X; Liu L; Chen Y; Xu S; Chen J
    Can J Microbiol; 2007 Sep; 53(9):1033-7. PubMed ID: 18026223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immobilization of growing Sphingomonas sp. HXN-200 to gelatin microspheres: efficient biotransformation of N-Cbz-pyrrolidine and N-Boc-pyrrolidine into hydroxypyrrolidine derivatives.
    Wang L; Loh KC; Tong YW
    J Biotechnol; 2014 Jul; 182-183():74-82. PubMed ID: 24815683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gellan gel beads containing magnetic nanoparticles: an effective biosorbent for the removal of heavy metals from aqueous system.
    Wang X; Zhao C; Zhao P; Dou P; Ding Y; Xu P
    Bioresour Technol; 2009 Apr; 100(7):2301-4. PubMed ID: 19059775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization.
    Shan GB; Xing JM; Luo MF; Liu HZ; Chen JY
    Biotechnol Lett; 2003 Dec; 25(23):1977-81. PubMed ID: 14719809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of mega plasmid from polycyclic aromatic hydrocarbon-degrading Sphingomonas sp. strain KS14.
    Cho JC; Kim SJ
    J Mol Microbiol Biotechnol; 2001 Oct; 3(4):503-6. PubMed ID: 11545268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria.
    Li YG; Gao HS; Li WL; Xing JM; Liu HZ
    Bioresour Technol; 2009 Nov; 100(21):5092-6. PubMed ID: 19541480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461.
    Harding NE; Patel YN; Coleman RJ
    J Ind Microbiol Biotechnol; 2004 Feb; 31(2):70-82. PubMed ID: 14767675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis and isolation of gellan polysaccharide to formulate microspheres for protein capture.
    Coelho J; Eusébio D; Gomes D; Frias F; Passarinha LA; Sousa Â
    Carbohydr Polym; 2019 Sep; 220():236-246. PubMed ID: 31196546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461.
    Bajaj IB; Saudagar PS; Singhal RS; Pandey A
    J Biosci Bioeng; 2006 Sep; 102(3):150-6. PubMed ID: 17046526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradation of nonylphenol polyethoxylates by functionalized Fe
    Bai N; Wang S; Sun P; Abuduaini R; Zhu X; Zhao Y
    Sci Total Environ; 2018 Feb; 615():462-468. PubMed ID: 28988082
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C.
    Mulla SI; Hu A; Wang Y; Sun Q; Huang SL; Wang H; Yu CP
    Chemosphere; 2016 Feb; 144():292-6. PubMed ID: 26364219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cost-effective optimization of gellan gum production by
    Huang J; Zhu S; Li C; Zhang C; Ji Y
    Prep Biochem Biotechnol; 2020; 50(2):191-197. PubMed ID: 31738649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis.
    Zhang J; Dong YC; Fan LL; Jiao ZH; Chen QH
    Carbohydr Polym; 2015 Jan; 115():694-700. PubMed ID: 25439950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.