These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17827659)

  • 1. Biosynthesis of the tunicamycins: a review.
    Price NP; Tsvetanova B
    J Antibiot (Tokyo); 2007 Aug; 60(8):485-91. PubMed ID: 17827659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational analysis of chirally deuterated tunicamycin as an active site probe of UDP-N-acetylhexosamine:polyprenol-P N-acetylhexosamine-1-P translocases.
    Xu L; Appell M; Kennedy S; Momany FA; Price NP
    Biochemistry; 2004 Oct; 43(42):13248-55. PubMed ID: 15491132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of tunicamycin and metabolic origin of the 11-carbon dialdose sugar, tunicamine.
    Tsvetanova BC; Kiemle DJ; Price NP
    J Biol Chem; 2002 Sep; 277(38):35289-96. PubMed ID: 12093793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunicamycin: chemical synthesis and biosynthesis.
    Yamamoto K; Ichikawa S
    J Antibiot (Tokyo); 2019 Dec; 72(12):924-933. PubMed ID: 31235901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases.
    Price NP; Momany FA
    Glycobiology; 2005 Sep; 15(9):29R-42R. PubMed ID: 15843595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic mechanism of MraY and WecA, two paralogues of the polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase superfamily.
    Al-Dabbagh B; Olatunji S; Crouvoisier M; El Ghachi M; Blanot D; Mengin-Lecreulx D; Bouhss A
    Biochimie; 2016 Aug; 127():249-57. PubMed ID: 27312048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and biological evaluation of a MraY selective analogue of tunicamycins.
    Yamamoto K; Sato T; Hikiji Y; Katsuyama A; Matsumaru T; Yakushiji F; Yokota SI; Ichikawa S
    Nucleosides Nucleotides Nucleic Acids; 2020; 39(1-3):349-364. PubMed ID: 31566068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GlcNAc-1-P-transferase-tunicamycin complex structure reveals basis for inhibition of N-glycosylation.
    Yoo J; Mashalidis EH; Kuk ACY; Yamamoto K; Kaeser B; Ichikawa S; Lee SY
    Nat Struct Mol Biol; 2018 Mar; 25(3):217-224. PubMed ID: 29459785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselective syntheses of the O,N-protected subunits of the tunicamycins.
    Karpiesiuk W; Banaszek A
    Carbohydr Res; 1997 Apr; 299(4):245-52. PubMed ID: 9175272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modular approach to the total synthesis of tunicamycins.
    Li J; Yu B
    Angew Chem Int Ed Engl; 2015 May; 54(22):6618-21. PubMed ID: 25873339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinovosamycins: new tunicamycin-type antibiotics in which the α, β-1″,11'-linked N-acetylglucosamine residue is replaced by N-acetylquinovosamine.
    Price NP; Labeda DP; Naumann TA; Vermillion KE; Bowman MJ; Berhow MA; Metcalf WW; Bischoff KM
    J Antibiot (Tokyo); 2016 Aug; 69(8):637-46. PubMed ID: 27189123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Escherichia coli mraY gene encoding UDP-N-acetylmuramoyl-pentapeptide: undecaprenyl-phosphate phospho-N-acetylmuramoyl-pentapeptide transferase.
    Ikeda M; Wachi M; Jung HK; Ishino F; Matsuhashi M
    J Bacteriol; 1991 Feb; 173(3):1021-6. PubMed ID: 1846850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis.
    Chen W; Qu D; Zhai L; Tao M; Wang Y; Lin S; Price NP; Deng Z
    Protein Cell; 2010 Dec; 1(12):1093-105. PubMed ID: 21153459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunicamycins from Marine-Derived
    Lee J; Hwang JY; Oh D; Oh DC; Park HG; Shin J; Oh KB
    Mar Drugs; 2024 Jun; 22(7):. PubMed ID: 39057401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates.
    Wyszynski FJ; Lee SS; Yabe T; Wang H; Gomez-Escribano JP; Bibb MJ; Lee SJ; Davies GJ; Davis BG
    Nat Chem; 2012 May; 4(7):539-46. PubMed ID: 22717438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective catalytic hydrogenation of the N-acyl and uridyl double bonds in the tunicamycin family of protein N-glycosylation inhibitors.
    Price NP; Jackson MA; Vermillion KE; Blackburn JA; Li J; Yu B
    J Antibiot (Tokyo); 2017 Dec; 70(12):1122-1128. PubMed ID: 29089601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conserved sequences in enzymes of the UDP-GlcNAc/MurNAc family are essential in hamster UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase.
    Dal Nogare AR; Dan N; Lehrman MA
    Glycobiology; 1998 Jun; 8(6):625-32. PubMed ID: 9592129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Active Site of the Antibacterial Target MraY by Modified Tunicamycins.
    Hering J; Dunevall E; Snijder A; Eriksson PO; Jackson MA; Hartman TM; Ting R; Chen H; Price NPJ; Brändén G; Ek M
    ACS Chem Biol; 2020 Nov; 15(11):2885-2895. PubMed ID: 33164499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for selective inhibition of antibacterial target MraY, a membrane-bound enzyme involved in peptidoglycan synthesis.
    Hering J; Dunevall E; Ek M; Brändén G
    Drug Discov Today; 2018 Jul; 23(7):1426-1435. PubMed ID: 29778697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosamine-1-phosphate transferase by retinoic acid in P19 cells.
    Meissner JD; Naumann A; Mueller WH; Scheibe RJ
    Biochem J; 1999 Mar; 338 ( Pt 2)(Pt 2):561-8. PubMed ID: 10024536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.