BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 17828257)

  • 1. Different roles of ribbon-associated and ribbon-free active zones in retinal bipolar cells.
    Midorikawa M; Tsukamoto Y; Berglund K; Ishii M; Tachibana M
    Nat Neurosci; 2007 Oct; 10(10):1268-76. PubMed ID: 17828257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that vesicles undergo compound fusion on the synaptic ribbon.
    Matthews G; Sterling P
    J Neurosci; 2008 May; 28(21):5403-11. PubMed ID: 18495874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging calcium entry sites and ribbon structures in two presynaptic cells.
    Zenisek D; Davila V; Wan L; Almers W
    J Neurosci; 2003 Apr; 23(7):2538-48. PubMed ID: 12684438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diurnal changes in exocytosis and the number of synaptic ribbons at active zones of an ON-type bipolar cell terminal.
    Hull C; Studholme K; Yazulla S; von Gersdorff H
    J Neurophysiol; 2006 Oct; 96(4):2025-33. PubMed ID: 16738212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming.
    Snellman J; Mehta B; Babai N; Bartoletti TM; Akmentin W; Francis A; Matthews G; Thoreson W; Zenisek D
    Nat Neurosci; 2011 Jul; 14(9):1135-41. PubMed ID: 21785435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ribbon-associated protein C-terminal-binding protein 1 is not essential for the structure and function of retinal ribbon synapses.
    Vaithianathan T; Akmentin W; Henry D; Matthews G
    Mol Vis; 2013; 19():917-26. PubMed ID: 23687428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility and turnover of vesicles at the synaptic ribbon.
    LoGiudice L; Sterling P; Matthews G
    J Neurosci; 2008 Mar; 28(12):3150-8. PubMed ID: 18354018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing synaptic vesicle turnover and pool refilling driven by calcium nanodomains at presynaptic active zones of ribbon synapses.
    Vaithianathan T; Matthews G
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8655-60. PubMed ID: 24912160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two Pools of Vesicles Associated with Synaptic Ribbons Are Molecularly Prepared for Release.
    Datta P; Gilliam J; Thoreson WB; Janz R; Heidelberger R
    Biophys J; 2017 Nov; 113(10):2281-2298. PubMed ID: 28863864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport, capture and exocytosis of single synaptic vesicles at active zones.
    Zenisek D; Steyer JA; Almers W
    Nature; 2000 Aug; 406(6798):849-54. PubMed ID: 10972279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Observation of Vesicle Transport on the Synaptic Ribbon Provides Evidence That Vesicles Are Mobilized and Prepared Rapidly for Release.
    Joselevitch C; Zenisek D
    J Neurosci; 2020 Sep; 40(39):7390-7404. PubMed ID: 32847965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presynaptic proteins of ribbon synapses in the retina.
    Morgans CW
    Microsc Res Tech; 2000 Jul; 50(2):141-50. PubMed ID: 10891878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Ca2+ signaling drives ribbon-independent synaptic transmission at rod bipolar cell synapses.
    Mehta B; Ke JB; Zhang L; Baden AD; Markowitz AL; Nayak S; Briggman KL; Zenisek D; Singer JH
    J Neurosci; 2014 Apr; 34(18):6233-44. PubMed ID: 24790194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Roles of Complexin 3 and Complexin 4 at Mouse Photoreceptor Ribbon Synapses.
    Babai N; Sendelbeck A; Regus-Leidig H; Fuchs M; Mertins J; Reim K; Brose N; Feigenspan A; Brandstätter JH
    J Neurosci; 2016 Jun; 36(25):6651-67. PubMed ID: 27335398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vesicle association and exocytosis at ribbon and extraribbon sites in retinal bipolar cell presynaptic terminals.
    Zenisek D
    Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4922-7. PubMed ID: 18339810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional roles of complexin in neurotransmitter release at ribbon synapses of mouse retinal bipolar neurons.
    Vaithianathan T; Henry D; Akmentin W; Matthews G
    J Neurosci; 2015 Mar; 35(9):4065-70. PubMed ID: 25740533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing synaptic ribbons in the living cell.
    Zenisek D; Horst NK; Merrifield C; Sterling P; Matthews G
    J Neurosci; 2004 Nov; 24(44):9752-9. PubMed ID: 15525760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse photoreceptor synaptic ribbons lose and regain material in response to illumination changes.
    Spiwoks-Becker I; Glas M; Lasarzik I; Vollrath L
    Eur J Neurosci; 2004 Mar; 19(6):1559-71. PubMed ID: 15066152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of phosphorylated protein kinase C alpha in goldfish retinal bipolar synaptic terminals: control by state of adaptation and pharmacological treatment.
    Behrens UD; Borde J; Mack AF; Wagner HJ
    Cell Tissue Res; 2007 Feb; 327(2):209-20. PubMed ID: 17043793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion of calcium microdomains regulates fast exocytosis at a ribbon synapse.
    Beaumont V; Llobet A; Lagnado L
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10700-5. PubMed ID: 16027365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.