These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 17828278)

  • 1. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries.
    Ellis BL; Makahnouk WR; Makimura Y; Toghill K; Nazar LF
    Nat Mater; 2007 Oct; 6(10):749-53. PubMed ID: 17828278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery.
    Nishimura S; Nakamura M; Natsui R; Yamada A
    J Am Chem Soc; 2010 Oct; 132(39):13596-7. PubMed ID: 20831186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small polaron hopping in Li(x)FePO4 solid solutions: coupled lithium-ion and electron mobility.
    Ellis B; Perry LK; Ryan DH; Nazar LF
    J Am Chem Soc; 2006 Sep; 128(35):11416-22. PubMed ID: 16939264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study.
    Kim H; Park I; Seo DH; Lee S; Kim SW; Kwon WJ; Park YU; Kim CS; Jeon S; Kang K
    J Am Chem Soc; 2012 Jun; 134(25):10369-72. PubMed ID: 22667817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-network electronic conduction in iron and nickel olivine phosphates.
    Herle PS; Ellis B; Coombs N; Nazar LF
    Nat Mater; 2004 Mar; 3(3):147-52. PubMed ID: 14991015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental visualization of lithium diffusion in LixFePO4.
    Nishimura S; Kobayashi G; Ohoyama K; Kanno R; Yashima M; Yamada A
    Nat Mater; 2008 Sep; 7(9):707-11. PubMed ID: 18690238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model.
    Delmas C; Maccario M; Croguennec L; Le Cras F; Weill F
    Nat Mater; 2008 Aug; 7(8):665-71. PubMed ID: 18641656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Batteries for electric and hybrid-electric vehicles.
    Cairns EJ; Albertus P
    Annu Rev Chem Biomol Eng; 2010; 1():299-320. PubMed ID: 22432583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.
    Zhu Y; Xu Y; Liu Y; Luo C; Wang C
    Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries.
    Ait Salah A; Jozwiak P; Zaghib K; Garbarczyk J; Gendron F; Mauger A; Julien CM
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Dec; 65(5):1007-13. PubMed ID: 16716657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode.
    Abouimrane A; Dambournet D; Chapman KW; Chupas PJ; Weng W; Amine K
    J Am Chem Soc; 2012 Mar; 134(10):4505-8. PubMed ID: 22364225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured silicon anodes for lithium ion rechargeable batteries.
    Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N
    Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronically conductive phospho-olivines as lithium storage electrodes.
    Chung SY; Bloking JT; Chiang YM
    Nat Mater; 2002 Oct; 1(2):123-8. PubMed ID: 12618828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.