These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 17828286)
41. Neurochemical evidence of calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) release from capsaicin-sensitive nerves in rat mesenteric arteries and veins. Manzini S; Perretti F; Tramontana M; Del Bianco E; Santicioli P; Maggi CA; Geppetti P Gen Pharmacol; 1991; 22(2):275-8. PubMed ID: 2055421 [TBL] [Abstract][Full Text] [Related]
42. Endothelium-dependent sensory NANC vasodilatation: involvement of ATP, CGRP and a possible NO store. Kakuyama M; Vallance P; Ahluwalia A Br J Pharmacol; 1998 Jan; 123(2):310-6. PubMed ID: 9489620 [TBL] [Abstract][Full Text] [Related]
43. Age-related decrease of calcitonin gene-related peptide-containing vasodilator innervation in the mesenteric resistance vessel of the spontaneously hypertensive rat. Kawasaki H; Saito A; Takasaki K Circ Res; 1990 Sep; 67(3):733-43. PubMed ID: 2397578 [TBL] [Abstract][Full Text] [Related]
44. Rapid nitric oxide- and prostaglandin-dependent release of calcitonin gene-related peptide (CGRP) triggered by endotoxin in rat mesenteric arterial bed. Wang X; Wu Z; Tang Y; Fiscus RR; Han C Br J Pharmacol; 1996 Aug; 118(8):2164-70. PubMed ID: 8864557 [TBL] [Abstract][Full Text] [Related]
45. Mechanisms involved in oleamide-induced vasorelaxation in rat mesenteric resistance arteries. Sudhahar V; Shaw S; Imig JD Eur J Pharmacol; 2009 Apr; 607(1-3):143-50. PubMed ID: 19326479 [TBL] [Abstract][Full Text] [Related]
46. [Endotoxin causes release of calcitonin gene-related peptide (CGRP) from the isolated mesenteric arterial bed in rat]. Wang X; Wu ZX; Tang YM; Han QD Sheng Li Xue Bao; 1996 Feb; 48(1):37-42. PubMed ID: 8758688 [TBL] [Abstract][Full Text] [Related]
47. Impaired capsaicin-induced relaxation in diabetic mesenteric arteries. Zhang Y; Chen Q; Sun Z; Han J; Wang L; Zheng L J Diabetes Complications; 2015 Aug; 29(6):747-54. PubMed ID: 26055306 [TBL] [Abstract][Full Text] [Related]
48. Chronic adriamycin treatment impairs CGRP-mediated functions of meningeal sensory nerves. Deák É; Rosta J; Boros K; Kis G; Sántha P; Messlinger K; Jancsó G; Dux M Neuropeptides; 2018 Jun; 69():46-52. PubMed ID: 29661478 [TBL] [Abstract][Full Text] [Related]
49. Involvement of capsaicin-sensitive afferent nerves in the proteinase-activated receptor 2-mediated vasodilatation in the rat dura mater. Dux M; Rosta J; Sántha P; Jancsó G Neuroscience; 2009 Jul; 161(3):887-94. PubMed ID: 19362118 [TBL] [Abstract][Full Text] [Related]
50. The in vitro and in vivo cardiovascular effects of Delta9-tetrahydrocannabinol in rats made hypertensive by chronic inhibition of nitric-oxide synthase. O'Sullivan SE; Randall MD; Gardiner SM J Pharmacol Exp Ther; 2007 May; 321(2):663-72. PubMed ID: 17284670 [TBL] [Abstract][Full Text] [Related]
51. Cannabinoids inhibit noradrenergic and purinergic sympathetic cotransmission in the rat isolated mesenteric arterial bed. Pakdeechote P; Dunn WR; Ralevic V Br J Pharmacol; 2007 Nov; 152(5):725-33. PubMed ID: 17641668 [TBL] [Abstract][Full Text] [Related]
52. Mechanism of prolonged vasorelaxation to ATP in the rat isolated mesenteric arterial bed. Ralevic V Br J Pharmacol; 2001 Feb; 132(3):685-92. PubMed ID: 11159721 [TBL] [Abstract][Full Text] [Related]
53. Low pH-induced release of calcitonin gene-related peptide from capsaicin-sensitive sensory nerves: mechanism of action and biological response. Geppetti P; Del Bianco E; Patacchini R; Santicioli P; Maggi CA; Tramontana M Neuroscience; 1991; 41(1):295-301. PubMed ID: 1711653 [TBL] [Abstract][Full Text] [Related]
54. Capsaicin-sensitive neurogenic sensory vasodilatation in the dura mater of the rat. Dux M; Sántha P; Jancsó G J Physiol; 2003 Nov; 552(Pt 3):859-67. PubMed ID: 12949222 [TBL] [Abstract][Full Text] [Related]
55. Modulation of trigeminal sensory neuron activity by the dual cannabinoid-vanilloid agonists anandamide, N-arachidonoyl-dopamine and arachidonyl-2-chloroethylamide. Price TJ; Patwardhan A; Akopian AN; Hargreaves KM; Flores CM Br J Pharmacol; 2004 Apr; 141(7):1118-30. PubMed ID: 15006899 [TBL] [Abstract][Full Text] [Related]
56. Electrophysiological effects of activating the peptidergic primary afferent innervation of rat mesenteric arteries. Dunn WR; Hardy TA; Brock JA Br J Pharmacol; 2003 Sep; 140(2):231-8. PubMed ID: 12970093 [TBL] [Abstract][Full Text] [Related]
57. Endovanilloids are potential activators of the trigeminovascular nocisensor complex. Dux M; Deák É; Tassi N; Sántha P; Jancsó G J Headache Pain; 2016; 17():53. PubMed ID: 27189587 [TBL] [Abstract][Full Text] [Related]
58. Neurogenic vasodilation and release of calcitonin gene-related peptide (CGRP) from perivascular nerves in the rat mesenteric artery. Fujimori A; Saito A; Kimura S; Watanabe T; Uchiyama Y; Kawasaki H; Goto K Biochem Biophys Res Commun; 1989 Dec; 165(3):1391-8. PubMed ID: 2610699 [TBL] [Abstract][Full Text] [Related]
59. The P1-purinoceptors that mediate the prejunctional inhibitory effect of adenosine on capsaicin-sensitive nonadrenergic noncholinergic neurotransmission in the rat mesenteric arterial bed are of the A1 subtype. Rubino A; Ralevic V; Burnstock G J Pharmacol Exp Ther; 1993 Dec; 267(3):1100-4. PubMed ID: 8263771 [TBL] [Abstract][Full Text] [Related]
60. Effect of pituitary adenylate cyclase activating polypeptide-38 on sensory neuropeptide release and neurogenic inflammation in rats and mice. Németh J; Reglödi D; Pozsgai G; Szabó A; Elekes K; Pintér E; Szolcsányi J; Helyes Z Neuroscience; 2006 Nov; 143(1):223-30. PubMed ID: 16938409 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]