BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17828460)

  • 1. An automated algorithm to detect the trabecular-cortical bone interface in micro-computed tomographic images.
    Lublinsky S; Ozcivici E; Judex S
    Calcif Tissue Int; 2007 Oct; 81(4):285-93. PubMed ID: 17828460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies.
    Thomsen JS; Laib A; Koller B; Prohaska S; Mosekilde L; Gowin W
    J Microsc; 2005 May; 218(Pt 2):171-9. PubMed ID: 15857378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis.
    Buie HR; Campbell GM; Klinck RJ; MacNeil JA; Boyd SK
    Bone; 2007 Oct; 41(4):505-15. PubMed ID: 17693147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images.
    Zebaze R; Ghasem-Zadeh A; Mbala A; Seeman E
    Bone; 2013 May; 54(1):8-20. PubMed ID: 23334082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated compartmental analysis for high-throughput skeletal phenotyping in femora of genetic mouse models.
    Kohler T; Stauber M; Donahue LR; Müller R
    Bone; 2007 Oct; 41(4):659-67. PubMed ID: 17662679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data.
    Kang Y; Engelke K; Kalender WA
    IEEE Trans Med Imaging; 2003 May; 22(5):586-98. PubMed ID: 12846428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of ground sections, paraffin sections and micro-CT imaging of bone from the epiphysis of the porcine femur for morphometric evaluation.
    Kubíková T; Bartoš M; Juhas Š; Suchý T; Sauerová P; Hubálek-Kalbáčová M; Tonar Z
    Ann Anat; 2018 Nov; 220():85-96. PubMed ID: 30092281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of vertebral and femoral trabecular morphology and stiffness using a flat-panel C-arm-based CT approach.
    Mulder L; van Rietbergen B; Noordhoek NJ; Ito K
    Bone; 2012 Jan; 50(1):200-8. PubMed ID: 22057082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelet-based characterization of vertebral trabecular bone structure from magnetic resonance images at 3 T compared with micro-computed tomographic measurements.
    Krug R; Carballido-Gamio J; Burghardt AJ; Haase S; Sedat JW; Moss WC; Majumdar S
    Magn Reson Imaging; 2007 Apr; 25(3):392-8. PubMed ID: 17371730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture.
    Müller R; Rüegsegger P
    Stud Health Technol Inform; 1997; 40():61-79. PubMed ID: 10168883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography.
    Bouxsein ML; Boyd SK; Christiansen BA; Guldberg RE; Jepsen KJ; Müller R
    J Bone Miner Res; 2010 Jul; 25(7):1468-86. PubMed ID: 20533309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility of bone micro-architecture measurements in rodents by in vivo micro-computed tomography is maximized with three-dimensional image registration.
    Nishiyama KK; Campbell GM; Klinck RJ; Boyd SK
    Bone; 2010 Jan; 46(1):155-61. PubMed ID: 19796719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation techniques for analysis of bone by three-dimensional computed tomographic imaging.
    Dufresne T
    Technol Health Care; 1998 Dec; 6(5-6):351-9. PubMed ID: 10100938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol bone evaluation using 3D microtomography.
    Lima I; Rocha MS; Lopes RT
    Micron; 2008 Jul; 39(5):617-22. PubMed ID: 17485216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gender specific LRP5 influences on trabecular bone structure and strength.
    Dubrow SA; Hruby PM; Akhter MP
    J Musculoskelet Neuronal Interact; 2007; 7(2):166-73. PubMed ID: 17627087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of trabecular bone thickness in the limited resolution regime of in vivo MRI by fuzzy distance transform.
    Saha PK; Wehrli FW
    IEEE Trans Med Imaging; 2004 Jan; 23(1):53-62. PubMed ID: 14719687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new high-resolution computed tomography (CT) segmentation method for trabecular bone architectural analysis.
    Scherf H; Tilgner R
    Am J Phys Anthropol; 2009 Sep; 140(1):39-51. PubMed ID: 19280676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision.
    Sievänen H; Koskue V; Rauhio A; Kannus P; Heinonen A; Vuori I
    J Bone Miner Res; 1998 May; 13(5):871-82. PubMed ID: 9610752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartmental bone morphometry in the mouse femur: reproducibility and resolution dependence of microtomographic measurements.
    Kohler T; Beyeler M; Webster D; Müller R
    Calcif Tissue Int; 2005 Nov; 77(5):281-90. PubMed ID: 16283571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo micro-CT scanning of a rabbit distal femur: repeatability and reproducibility.
    Voor MJ; Yang S; Burden RL; Waddell SW
    J Biomech; 2008; 41(1):186-93. PubMed ID: 17716676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.