These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 17828599)

  • 41. Crosslinking of phenylboronic acid receptors as a means of glucose selective holographic detection.
    Horgan AM; Marshall AJ; Kew SJ; Dean KE; Creasey CD; Kabilan S
    Biosens Bioelectron; 2006 Mar; 21(9):1838-45. PubMed ID: 16414255
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Initial clinical testing of a holographic non-invasive contact lens glucose sensor.
    Domschke A; March WF; Kabilan S; Lowe C
    Diabetes Technol Ther; 2006 Feb; 8(1):89-93. PubMed ID: 16472055
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel injectable pH and temperature sensitive block copolymer hydrogel.
    Shim WS; Yoo JS; Bae YH; Lee DS
    Biomacromolecules; 2005; 6(6):2930-4. PubMed ID: 16283710
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biodegradation of absorbable sutures in body fluids and pH buffers.
    Freudenberg S; Rewerk S; Kaess M; Weiss C; Dorn-Beinecke A; Post S
    Eur Surg Res; 2004; 36(6):376-85. PubMed ID: 15591748
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrochemical control of the enzymatic polymerization of PEG hydrogels: formation of spatially controlled biological microenvironments.
    Milleret V; Simona BR; Lienemann PS; Vörös J; Ehrbar M
    Adv Healthc Mater; 2014 Apr; 3(4):508-14. PubMed ID: 24574303
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds.
    Garbacz G; Kołodziej B; Koziolek M; Weitschies W; Klein S
    Eur J Pharm Sci; 2014 Jan; 51():224-31. PubMed ID: 24095865
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix.
    Fenzl C; Wilhelm S; Hirsch T; Wolfbeis OS
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):173-8. PubMed ID: 23211147
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs.
    Diramio JA; Kisaalita WS; Majetich GF; Shimkus JM
    Biotechnol Prog; 2005; 21(4):1281-8. PubMed ID: 16080712
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Injectable in situ-forming pH/thermo-sensitive hydrogel for bone tissue engineering.
    Kim HK; Shim WS; Kim SE; Lee KH; Kang E; Kim JH; Kim K; Kwon IC; Lee DS
    Tissue Eng Part A; 2009 Apr; 15(4):923-33. PubMed ID: 19061427
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gentamicin release from two-solution and powder-liquid poly(methyl methacrylate)-based bone cements by using novel pH method.
    Merkhan IK; Hasenwinkel JM; Gilbert JL
    J Biomed Mater Res A; 2004 Jun; 69(3):577-83. PubMed ID: 15127405
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Buckling, symmetry breaking, and cavitation in periodically micro-structured hydrogel membranes.
    Wu G; Xia Y; Yang S
    Soft Matter; 2014 Mar; 10(9):1392-9. PubMed ID: 24651251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design of a novel hydrogel-based intelligent system for controlled drug release.
    He H; Cao X; Lee LJ
    J Control Release; 2004 Mar; 95(3):391-402. PubMed ID: 15023451
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Blood compatibility of photografted hydrogel coatings.
    Faxälv L; Ekblad T; Liedberg B; Lindahl TL
    Acta Biomater; 2010 Jul; 6(7):2599-608. PubMed ID: 20045090
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers.
    Mishra SK; Gupta BD
    Analyst; 2013 May; 138(9):2640-6. PubMed ID: 23486702
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development and application of an excitation ratiometric optical pH sensor for bioprocess monitoring.
    Badugu R; Kostov Y; Rao G; Tolosa L
    Biotechnol Prog; 2008; 24(6):1393-401. PubMed ID: 19194954
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis and Characterization of
    Lavine BK; Kaval N; Oxenford L; Kim M; Dahal KS; Perera N; Seitz R; Moulton JT; Bunce RA
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Swellable Copolymers of
    Lavine BK; Pampati SR; Dahal KS; Kim M; Perera UDNT; Benjamin M; Bunce RA
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32204526
    [TBL] [Abstract][Full Text] [Related]  

  • 59. State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China.
    Korostynska O; Arshak K; Gill E; Arshak A
    Sensors (Basel); 2007 Nov; 7(12):3027-3042. PubMed ID: 28903277
    [TBL] [Abstract][Full Text] [Related]  

  • 60. pH-sensitive holograms for continuous monitoring in plasma.
    Medlock K; Harmer H; Worsley G; Horgan A; Pritchard J
    Anal Bioanal Chem; 2007 Nov; 389(5):1533-9. PubMed ID: 17828599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.