These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 17828727)

  • 1. Prospecting the proteome: identification of naturally occurring binding motifs for biarsenical probes.
    Wang T; Yan P; Squier TC; Mayer MU
    Chembiochem; 2007 Nov; 8(16):1937-40. PubMed ID: 17828727
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of purified c-type heme-containing peptides and identification of c-type heme-attachment sites in Shewanella oneidenis cytochromes using mass spectrometry.
    Yang F; Bogdanov B; Strittmatter EF; Vilkov AN; Gritsenko M; Shi L; Elias DA; Ni S; Romine M; Pasa-Tolić L; Lipton MS; Smith RD
    J Proteome Res; 2005; 4(3):846-54. PubMed ID: 15952731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity.
    Martin BR; Giepmans BN; Adams SR; Tsien RY
    Nat Biotechnol; 2005 Oct; 23(10):1308-14. PubMed ID: 16155565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenolthiol and dithiol C-terminal tetrapeptide motifs for one-step purification and labeling of recombinant proteins produced in E. coli.
    Cheng Q; Johansson L; Thorell JO; Fredriksson A; Samén E; Stone-Elander S; Arnér ES
    Chembiochem; 2006 Dec; 7(12):1976-81. PubMed ID: 17031888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of an orthogonal peptide binding motif for biarsenical multiuse affinity probes.
    Chen B; Cao H; Yan P; Mayer MU; Squier TC
    Bioconjug Chem; 2007; 18(4):1259-65. PubMed ID: 17569496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hairpin structure of a biarsenical-tetracysteine motif determined by NMR spectroscopy.
    Madani F; Lind J; Damberg P; Adams SR; Tsien RY; Gräslund AO
    J Am Chem Soc; 2009 Apr; 131(13):4613-5. PubMed ID: 19281235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of AsCy3 with cysteine-rich peptides.
    Alexander SC; Schepartz A
    Org Lett; 2014 Jul; 16(14):3824-7. PubMed ID: 24999741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The high Zn(II) affinity of the tetracysteine tag affects its fluorescent labeling with biarsenicals.
    Pomorski A; Otlewski J; Krezel A
    Chembiochem; 2010 Jun; 11(9):1214-8. PubMed ID: 20440728
    [No Abstract]   [Full Text] [Related]  

  • 9. A red cy3-based biarsenical fluorescent probe targeted to a complementary binding peptide.
    Cao H; Xiong Y; Wang T; Chen B; Squier TC; Mayer MU
    J Am Chem Soc; 2007 Jul; 129(28):8672-3. PubMed ID: 17585763
    [No Abstract]   [Full Text] [Related]  

  • 10. Widespread and ample peptide overlapping between HCV and Homo sapiens proteomes.
    Kusalik A; Bickis M; Lewis C; Li Y; Lucchese G; Marincola FM; Kanduc D
    Peptides; 2007 Jun; 28(6):1260-7. PubMed ID: 17485143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biarsenical-tetracysteine motif as a fluorescent tag for detection in capillary electrophoresis.
    Kottegoda S; Aoto PC; Sims CE; Allbritton NL
    Anal Chem; 2008 Jul; 80(14):5358-66. PubMed ID: 18522433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A targeted releasable affinity probe (TRAP) for in vivo photocrosslinking.
    Yan P; Wang T; Newton GJ; Knyushko TV; Xiong Y; Bigelow DJ; Squier TC; Mayer MU
    Chembiochem; 2009 Jun; 10(9):1507-18. PubMed ID: 19441027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a fluorescent peptide for the detection of vascular endothelial growth factor (VEGF).
    Suzuki Y; Yokoyama K
    Chembiochem; 2009 Jul; 10(11):1793-5. PubMed ID: 19554591
    [No Abstract]   [Full Text] [Related]  

  • 14. Preferential selection of Cys-constrained peptides from a random phage-displayed library by anti-glucitollysine antibodies.
    Rojas G; Pupo A; Del Rosario Aleman M; Vispo NS
    J Pept Sci; 2008 Nov; 14(11):1216-21. PubMed ID: 18752255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved photostable FRET-competent biarsenical-tetracysteine probes based on fluorinated fluoresceins.
    Spagnuolo CC; Vermeij RJ; Jares-Erijman EA
    J Am Chem Soc; 2006 Sep; 128(37):12040-1. PubMed ID: 16967933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A very short route to enantiomerically pure coumarin-bearing fluorescent amino acids.
    Brun MP; Bischoff L; Garbay C
    Angew Chem Int Ed Engl; 2004 Jun; 43(26):3432-6. PubMed ID: 15221831
    [No Abstract]   [Full Text] [Related]  

  • 17. Bipartite tetracysteine display requires site flexibility for ReAsH coordination.
    Goodman JL; Fried DB; Schepartz A
    Chembiochem; 2009 Jul; 10(10):1644-7. PubMed ID: 19533719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biarsenical dye Lumio exhibits a reduced ability to specifically detect tetracysteine-containing proteins within live cells.
    Hearps AC; Pryor MJ; Kuusisto HV; Rawlinson SM; Piller SC; Jans DA
    J Fluoresc; 2007 Nov; 17(6):593-7. PubMed ID: 17805945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CrAsH: a biarsenical multi-use affinity probe with low non-specific fluorescence.
    Cao H; Chen B; Squier TC; Mayer MU
    Chem Commun (Camb); 2006 Jun; (24):2601-3. PubMed ID: 16779491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of different dyes for the detection of proteomes derived from Escherichia coli and MDCK cells: sensitivity and selectivity.
    Chiangjong W; Thongboonkerd V
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 May; 877(14-15):1433-9. PubMed ID: 19342317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.