BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 17828757)

  • 1. Heterogeneity of monoclonal antibodies.
    Liu H; Gaza-Bulseco G; Faldu D; Chumsae C; Sun J
    J Pharm Sci; 2008 Jul; 97(7):2426-47. PubMed ID: 17828757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method to convert N-terminal glutamine to pyroglutamate for characterization of recombinant monoclonal antibodies.
    Xu W; Peng Y; Wang F; Paporello B; Richardson D; Liu H
    Anal Biochem; 2013 May; 436(1):10-2. PubMed ID: 23357233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of N-terminal glutamate cyclization of recombinant monoclonal antibody in formulation development.
    Yu L; Vizel A; Huff MB; Young M; Remmele RL; He B
    J Pharm Biomed Anal; 2006 Oct; 42(4):455-63. PubMed ID: 16828250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isomerization and Oxidation in the Complementarity-Determining Regions of a Monoclonal Antibody: A Study of the Modification-Structure-Function Correlations by Hydrogen-Deuterium Exchange Mass Spectrometry.
    Yan Y; Wei H; Fu Y; Jusuf S; Zeng M; Ludwig R; Krystek SR; Chen G; Tao L; Das TK
    Anal Chem; 2016 Feb; 88(4):2041-50. PubMed ID: 26824491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo modifications of recombinant and human IgG antibodies.
    Liu H; Ponniah G; Zhang HM; Nowak C; Neill A; Gonzalez-Lopez N; Patel R; Cheng G; Kita AZ; Andrien B
    MAbs; 2014; 6(5):1145-54. PubMed ID: 25517300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the conformational impact of chemical modifications on monoclonal antibodies with diverse sequence variation using hydrogen/deuterium exchange mass spectrometry and structural modeling.
    Zhang A; Hu P; MacGregor P; Xue Y; Fan H; Suchecki P; Olszewski L; Liu A
    Anal Chem; 2014 Apr; 86(7):3468-75. PubMed ID: 24597564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of deamidation and isomerization sites on pharmaceutical recombinant antibody using H(2)(18)O.
    Terashima I; Koga A; Nagai H
    Anal Biochem; 2007 Sep; 368(1):49-60. PubMed ID: 17617368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies in serum support rapid formation of disulfide bond between unpaired cysteine residues in the VH domain of an immunoglobulin G1 molecule.
    Ouellette D; Alessandri L; Chin A; Grinnell C; Tarcsa E; Radziejewski C; Correia I
    Anal Biochem; 2010 Feb; 397(1):37-47. PubMed ID: 19766583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementary MS methods assist conformational characterization of antibodies with altered S-S bonding networks.
    Jones LM; Zhang H; Cui W; Kumar S; Sperry JB; Carroll JA; Gross ML
    J Am Soc Mass Spectrom; 2013 Jun; 24(6):835-45. PubMed ID: 23483515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of posttranslational modifications on the thermal stability of a recombinant monoclonal antibody.
    Liu H; Bulseco GG; Sun J
    Immunol Lett; 2006 Aug; 106(2):144-53. PubMed ID: 16831470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifications of recombinant monoclonal antibodies in vivo.
    Liu H; Nowak C; Patel R
    Biologicals; 2019 May; 59():1-5. PubMed ID: 30910309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of trisulfide modification in antibodies.
    Gu S; Wen D; Weinreb PH; Sun Y; Zhang L; Foley SF; Kshirsagar R; Evans D; Mi S; Meier W; Pepinsky RB
    Anal Biochem; 2010 May; 400(1):89-98. PubMed ID: 20085742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of disulfide and hinge modifications in monoclonal antibodies.
    Moritz B; Stracke JO
    Electrophoresis; 2017 Mar; 38(6):769-785. PubMed ID: 27982442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast analysis of recombinant monoclonal antibodies using IdeS proteolytic digestion and electrospray mass spectrometry.
    Chevreux G; Tilly N; Bihoreau N
    Anal Biochem; 2011 Aug; 415(2):212-4. PubMed ID: 21596014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the origin of the N-terminal pyro-glutamate variation in monoclonal antibodies using model peptides.
    Dick LW; Kim C; Qiu D; Cheng KC
    Biotechnol Bioeng; 2007 Jun; 97(3):544-53. PubMed ID: 17099914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving disulfide structural isoforms of IgG2 monoclonal antibodies by ion mobility mass spectrometry.
    Bagal D; Valliere-Douglass JF; Balland A; Schnier PD
    Anal Chem; 2010 Aug; 82(16):6751-5. PubMed ID: 20704363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function.
    Liu H; May K
    MAbs; 2012; 4(1):17-23. PubMed ID: 22327427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of cosolutes on the isomerization of aspartic acid residues and conformational stability in a monoclonal antibody.
    Wakankar AA; Liu J; Vandervelde D; Wang YJ; Shire SJ; Borchardt RT
    J Pharm Sci; 2007 Jul; 96(7):1708-18. PubMed ID: 17238195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microheterogeneity of Recombinant Antibodies: Analytics and Functional Impact.
    Beyer B; Schuster M; Jungbauer A; Lingg N
    Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 28862393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions.
    Grassi L; Cabrele C
    Amino Acids; 2019 Nov; 51(10-12):1409-1431. PubMed ID: 31576455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.