BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1783109)

  • 1. Roles of molybdenum, FAD and iron-sulphur domains in molybdenum-containing hydroxylases: molecular genetic, kinetic and spectroscopic studies.
    Hughes RK; Bennett B; Doyle WA; Burke JF; Chovnick A; Bray RC
    Biochem Soc Trans; 1991 Aug; 19(3):260S. PubMed ID: 1783109
    [No Abstract]   [Full Text] [Related]  

  • 2. Use of rosy mutant strains of Drosophila melanogaster to probe the structure and function of xanthine dehydrogenase.
    Hughes RK; Doyle WA; Chovnick A; Whittle JR; Burke JF; Bray RC
    Biochem J; 1992 Jul; 285 ( Pt 2)(Pt 2):507-13. PubMed ID: 1637342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xanthine dehydrogenase from Drosophila melanogaster: purification and properties of the wild-type enzyme and of a variant lacking iron-sulfur centers.
    Hughes RK
    Biochemistry; 1992 Mar; 31(12):3073-83. PubMed ID: 1313286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of xanthine dehydrogenase variants from rosy mutant strains of Drosophila melanogaster and their relevance to the enzyme's structure and mechanism.
    Doyle WA; Burke JF; Chovnick A; Dutton FL; Whittle JR; Bray RC
    Eur J Biochem; 1996 Aug; 239(3):782-95. PubMed ID: 8774727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of multiple forms of rat liver xanthine oxidoreductase expressed in baculovirus-insect cell system.
    Nishino T; Amaya Y; Kawamoto S; Kashima Y; Okamoto K; Nishino T
    J Biochem; 2002 Oct; 132(4):597-606. PubMed ID: 12359075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role and oxidation state of the pterin molybdenum cofactor of molybdenum enzymes: studies of a Drosophila melanogaster xanthine dehydrogenase (rosy) variant, G1011E.
    Doyle WA; Chovnick A; Whittle JR; Bray RC
    Biochem Soc Trans; 1996 Feb; 24(1):14S. PubMed ID: 8674630
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of the [2Fe-2s] cluster centers in xanthine oxidoreductase.
    Nishino T; Okamoto K
    J Inorg Biochem; 2000 Nov; 82(1-4):43-9. PubMed ID: 11132637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of the domain containing the molybdenum, iron-sulfur I, and iron-sulfur II centers of chicken liver xanthine dehydrogenase.
    Coughlan MP; Betcher-Lange SL; Rajagopalan KV
    J Biol Chem; 1979 Nov; 254(21):10694-9. PubMed ID: 227849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox potentials of milk xanthine dehydrogenase. Room temperature measurement of the FAD and 2Fe/2S center potentials.
    Hunt J; Massey V; Dunham WR; Sands RH
    J Biol Chem; 1993 Sep; 268(25):18685-91. PubMed ID: 8395516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase.
    Turner NA; Doyle WA; Ventom AM; Bray RC
    Eur J Biochem; 1995 Sep; 232(2):646-57. PubMed ID: 7556219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies by electron-paramagnetic-resonance spectroscopy and stopped-flow spectrophotometry on the mechanism of action of turkey liver xanthine dehydrogenase.
    Barber MJ; Bray RC; Lowe DJ; Coughlan MP
    Biochem J; 1976 Feb; 153(2):297-307. PubMed ID: 179533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of human xanthine oxidoreductase: the enzyme is grossly deficient in molybdenum and substantially deficient in iron-sulphur centres.
    Godber BL; Schwarz G; Mendel RR; Lowe DJ; Bray RC; Eisenthal R; Harrison R
    Biochem J; 2005 Jun; 388(Pt 2):501-8. PubMed ID: 15679468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic coupling of the molybdenum and iron-sulphur centres in xanthine oxidase and xanthine dehydrogenases.
    Lowe DJ; Bray RC
    Biochem J; 1978 Mar; 169(3):471-9. PubMed ID: 25647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies by electron-paramagnetic-resonance spectroscopy on the mechanism of action of xanthine dehydrogenase from Veillonella alcalescens.
    Dalton H; Lowe DJ; Pawlik T; Bray RC
    Biochem J; 1976 Feb; 153(2):287-95. PubMed ID: 179532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-sulphur systems in some isolated multi-component oxidative enzymes.
    Bray RC; Barber MJ; Dalton H; Lowe DJ; Coughlan MP
    Biochem Soc Trans; 1975; 3(4):479-82. PubMed ID: 1237425
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies of the reductive half-reaction of milk xanthine dehydrogenase.
    Hunt J; Massey V
    J Biol Chem; 1994 Jul; 269(29):18904-14. PubMed ID: 8034647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transfer process in milk xanthine dehydrogenase as studied by pulse radiolysis.
    Kobayashi K; Miki M; Okamoto K; Nishino T
    J Biol Chem; 1993 Nov; 268(33):24642-6. PubMed ID: 8227023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drosophila melanogaster ma-l mutants are defective in the sulfuration of desulfo Mo hydroxylases.
    Wahl RC; Warner CK; Finnerty V; Rajagopalan KV
    J Biol Chem; 1982 Apr; 257(7):3958-62. PubMed ID: 6801056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the origin of the cyanolysable sulphur in molybdenum iron/sulphur flavin hydroxylases.
    Coughlan MP
    FEBS Lett; 1977 Sep; 81(1):1-6. PubMed ID: 902762
    [No Abstract]   [Full Text] [Related]  

  • 20. Purification and partial characterisation of camel milk xanthine oxidoreductase.
    Baghiani A; Harrison R; Benboubetra M
    Arch Physiol Biochem; 2003 Dec; 111(5):407-14. PubMed ID: 16026028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.