These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1783144)

  • 21. Phosphorylation of specific rat intestinal microvillus and basal-lateral membrane proteins by cyclic nucleotides.
    Shlatz LJ; Kimberg DV; Cattieu KA
    Gastroenterology; 1979 Feb; 76(2):293-9. PubMed ID: 215489
    [No Abstract]   [Full Text] [Related]  

  • 22. Measurements and characteristics of intestinal riboflavin transport.
    Rindi G; Gastaldi G
    Methods Enzymol; 1997; 280():399-407. PubMed ID: 9211335
    [No Abstract]   [Full Text] [Related]  

  • 23. Distribution of insulin-like growth factor receptors in rat intestinal epithelium.
    Sullivan TA; MacDonald RG
    Nebr Med J; 1995 Mar; 80(3):58-61. PubMed ID: 7731482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphate transport across brush border and basolateral membrane vesicles of small intestine.
    Danisi G; van Os CH; Straub RW
    Prog Clin Biol Res; 1984; 168():229-34. PubMed ID: 6514734
    [No Abstract]   [Full Text] [Related]  

  • 25. Reversible binding and irreversible translocation: two distinct stages in sodium and solute cotransport in the small intestine [proceedings].
    Alvarado F
    J Physiol; 1979 Jul; 292():77P-78P. PubMed ID: 490413
    [No Abstract]   [Full Text] [Related]  

  • 26. [Effect of beta-sitosterol incorporated into liposomes on several indicators of lipid metabolism in experimental hypercholesteremia in rats].
    Datsenko ZM; Kholodova IuD; Kokunin VA; Klimashevskiĭ VM; Peredereĭ OF
    Vopr Med Khim; 1984; 30(6):33-8. PubMed ID: 6528535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of scavenger receptors SR-BI and CD36 in selective sterol uptake in the small intestine.
    Werder M; Han CH; Wehrli E; Bimmler D; Schulthess G; Hauser H
    Biochemistry; 2001 Sep; 40(38):11643-50. PubMed ID: 11560515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binding of epidermal growth factor by human colon carcinoma cell (Caco-2) monolayers.
    Hidalgo IJ; Kato A; Borchardt RT
    Biochem Biophys Res Commun; 1989 Apr; 160(1):317-24. PubMed ID: 2785387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analogs of human epidermal growth factor which partially inhibit the growth factor-dependent protein-tyrosine kinase activity of the epidermal growth factor receptor.
    Matsunami RK; Campion SR; Niyogi SK; Stevens A
    FEBS Lett; 1990 May; 264(1):105-8. PubMed ID: 2159890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of SH-groups in the concentrative transport of D-glucose into brush border membrane vesicles.
    Biber J; Hauser H
    FEBS Lett; 1979 Dec; 108(2):451-6. PubMed ID: 520588
    [No Abstract]   [Full Text] [Related]  

  • 31. Luminal hydrolysis of recombinant human epidermal growth factor in the rat gastrointestinal tract: segmental and developmental differences.
    Britton JR; George-Nascimento C; Koldovsky O
    Life Sci; 1988; 43(17):1339-47. PubMed ID: 3263558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alterations in labeling of cell-surface glycoproteins from normal and diabetic rat intestinal microvillous membranes.
    Jacobs LR
    Biochim Biophys Acta; 1981 Dec; 649(2):155-61. PubMed ID: 7317389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of EGF receptor in duodenum at weaning.
    Ootani A; Fujimoto K
    J Gastroenterol; 2003; 38(7):710-11. PubMed ID: 12903667
    [No Abstract]   [Full Text] [Related]  

  • 34. Effect of streptozotocin-induced diabetes on epidermal growth factor receptors in rat liver plasma membrane.
    Kashimata M; Hiramatsu M; Minami N
    Biochim Biophys Acta; 1987 Mar; 923(3):496-500. PubMed ID: 2950929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization and autoradiographic localization of the epidermal growth factor receptor in the jejunum of neonatal and weaned pigs.
    Kelly D; McFadyen M; King TP; Morgan PJ
    Reprod Fertil Dev; 1992; 4(2):183-91. PubMed ID: 1438948
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vectorial release of sulfoconjugates in the vascularly perfused mouse small intestine.
    Wollenberg P; Rummel W
    Biochem Pharmacol; 1984 Jan; 33(2):205-8. PubMed ID: 6704147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Calcium binding by rat small intestine epithelium microvilli at different contents of vitamin D].
    Fernandes Regalado R; Spirichev VB; Blazheevich NV; Pereverzeva OG
    Biokhimiia; 1981 Jan; 46(1):172-80. PubMed ID: 6972786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional interactions of lipids and proteins in rat intestinal microvillus membranes.
    Brasitus TA; Schachter D; Mamouneas TG
    Biochemistry; 1979 Sep; 18(19):4136-44. PubMed ID: 39592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 35S-Sulphate labelling of glycoproteins and glycolipids in rabbit small intestinal brush borders.
    Cooper JR; Kent PW
    Biochem Biophys Res Commun; 1978 Jul; 83(2):622-7. PubMed ID: 697845
    [No Abstract]   [Full Text] [Related]  

  • 40. The C-terminus of the transmembrane mucin MUC17 binds to the scaffold protein PDZK1 that stably localizes it to the enterocyte apical membrane in the small intestine.
    Malmberg EK; Pelaseyed T; Petersson AC; Seidler UE; De Jonge H; Riordan JR; Hansson GC
    Biochem J; 2008 Mar; 410(2):283-9. PubMed ID: 17990980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.