These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1783490)

  • 41. The investigation of Fmoc-cysteine derivatives in solid phase peptide synthesis.
    McCurdy SN
    Pept Res; 1989; 2(1):147-52. PubMed ID: 2577698
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Solid-Phase Synthesis of 1,3,4-Thiadiazole Derivatives via Desulfurative Cyclization of Thiosemicarbazide Intermediate Resin.
    Yang SJ; Choe JH; Gong YD
    ACS Comb Sci; 2016 Aug; 18(8):499-506. PubMed ID: 27362292
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of the final deprotection system for the solid-phase synthesis of Tyr(SO3H)-containing peptides with 9-fluorenylmethyloxycarbonyl (Fmoc)-strategy and its application to the synthesis of cholecystokinin (CCK)-12.
    Yagami T; Shiwa S; Futaki S; Kitagawa K
    Chem Pharm Bull (Tokyo); 1993 Feb; 41(2):376-80. PubMed ID: 8500203
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of N-tert.-butoxycarbonyl-( alpha-phenyl)aminomethylphenoxyacetic acid for use as a handle in solid-phase synthesis of peptide alpha-carboxamides.
    Gaehde SA; Matsueda GR
    Int J Pept Protein Res; 1981 Nov; 18(5):451-8. PubMed ID: 7341527
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trifluoroacetic anhydride-mediated solid-phase version of the Robinson-Gabriel synthesis of oxazoles.
    Pulici M; Quartieri F; Felder ER
    J Comb Chem; 2005; 7(3):463-73. PubMed ID: 15877475
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unexpected hydrolytic instability of N-acylated amino acid amides and peptides.
    Samaritoni JG; Copes AT; Crews DK; Glos C; Thompson AL; Wilson C; O'Donnell MJ; Scott WL
    J Org Chem; 2014 Apr; 79(7):3140-51. PubMed ID: 24617596
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Accelerated Fmoc solid-phase synthesis of peptides with aggregation-disrupting backbones.
    Huang YC; Guan CJ; Tan XL; Chen CC; Guo QX; Li YM
    Org Biomol Chem; 2015 Feb; 13(5):1500-6. PubMed ID: 25476596
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solid-phase synthesis of tetrahydro-1,4-benzodiazepine-2-one derivatives as a beta-turn peptidomimetic library.
    Im I; Webb TR; Gong YD; Kim JI; Kim YC
    J Comb Chem; 2004; 6(2):207-13. PubMed ID: 15002968
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Solid phase synthesis without repetitive acidolysis. Preparation of leucyl-alanyl-glycyl-valine using 9-fluorenylmethyloxycarbonylamino acids.
    Meienhofer J; Waki M; Heimer EP; Lambros TJ; Makofske RC; Chang CD
    Int J Pept Protein Res; 1979 Jan; 13(1):35-42. PubMed ID: 422322
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hantzsch pyrrole synthesis on solid support.
    Trautwein AW; Süssmuth RD; Jung G
    Bioorg Med Chem Lett; 1998 Sep; 8(17):2381-4. PubMed ID: 9873545
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A solid-phase synthetic strategy for the preparation of peptide-based affinity labels: synthesis of dynorphin A analogs.
    Leelasvatanakij L; Aldrich JV
    J Pept Res; 2000 Aug; 56(2):80-7. PubMed ID: 10961542
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of monofunctionalized gold nanoparticles by fmoc solid-phase reactions.
    Sung KM; Mosley DW; Peelle BR; Zhang S; Jacobson JM
    J Am Chem Soc; 2004 Apr; 126(16):5064-5. PubMed ID: 15099078
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fmoc SPPS using Perloza beaded cellulose.
    Englebretsen DR; Harding DR
    Int J Pept Protein Res; 1994 Jun; 43(6):546-54. PubMed ID: 7928085
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation.
    Lioe H; Laskin J; Reid GE; O'Hair RA
    J Phys Chem A; 2007 Oct; 111(42):10580-8. PubMed ID: 17914758
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Imaging time-of-flight secondary ion mass spectrometry of solid-phase peptide syntheses.
    Aubagnac JL; Enjalbal C; Drouot C; Combarieu R; Martinez J
    J Mass Spectrom; 1999 Jul; 34(7):749-54. PubMed ID: 10407359
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Backbone amide linker strategy: protocols for the synthesis of C-terminal peptide aldehydes.
    Shelton PT; Jensen KJ
    Methods Mol Biol; 2013; 1047():131-9. PubMed ID: 23943483
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Progress in the preparation of peptide aldehydes via polymer supported IBX oxidation and scavenging by threonyl resin.
    Sorg G; Thern B; Mader O; Rademann J; Jung G
    J Pept Sci; 2005 Mar; 11(3):142-52. PubMed ID: 15635642
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Peptide backbone cleavage by α-amidation is enhanced at methionine residues.
    Hellwig M; Löbmann K; Orywol T
    J Pept Sci; 2015 Jan; 21(1):17-23. PubMed ID: 25420700
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 1,3,5-Tri- and 1,3,4,5-tetra-substituted 1,4-diazepin-2-one solid-phase synthesis.
    Iden HS; Lubell WD
    J Comb Chem; 2008; 10(5):691-9. PubMed ID: 18687008
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Towards understanding the tandem mass spectra of protonated oligopeptides. 1: mechanism of amide bond cleavage.
    Paizs B; Suhai S
    J Am Soc Mass Spectrom; 2004 Jan; 15(1):103-13. PubMed ID: 14698560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.